Rotational Motion, Windmill, Waterwheel, Steam Engine, Compressed Air and Electric Power

Posted by PITHOCRATES - July 24th, 2013

Technology 101

The Combination of Force and Current of Moving Water on a Waterwheel produced Rotational Motion

Through most of history man has used animals for their source of power.  To do the heavy work in our advancing civilizations.  And they worked very well for linear work.  Going long distances in a straight line.  Such as pulling a carriage.  Or a plow.  Things done outdoors.  A long place typically from where people ate and slept.  So animal urine and feces wasn’t a great problem.  But the closer we brought them to our civilized parts of society it became a problem.  For it brought the smell, the flies and the disease closer to our civilized part of life.

Animals were good for linear work.  But as civilization advanced rotational work became more important.  For as machines advanced they needed to spin.  The more advanced machines needed to spin at a fairly high revolutions per minute (rpm).  We have used animals to produce rotational motion.  By having them walk in a small circle.  To slowly turn a mill stone.  Or some other rotational machine.  But it was inefficient.  As animals can’t work continuously.  Especially when walking in a circle.  They have to rest.  Eat.  And they have to urinate and defecate.  Making it unclean.  And unhealthy.

The first great industrial advance was water power.  Using a waterwheel.  Spun by a current of water.  Either a large force of water moving slow and steady.  Like in a river.  Or a small force of water moving fast and furiously.  Like in a small waterfall.  This combination of force and current produced rotational movement.  And useable power.  The waterwheel produced a rotational motion.  This rotational motion drove a main drive shaft through a factory.  Gear trains could speed up the rpm produced by a slow river current.  Or reduce the rpm produced by a fast waterfall current.  To produce a constant rotational speed.  That was strong enough to drive numerous loads attached to the main drive shaft via belts and pulleys.

Compressed Air Systems allowed us to produce Rotational Motion at our Workstations

Water power was a great advancement over animal power.  But it had one major drawback.  You needed a moving current of water.  Which meant we had to build our factories on the banks of rivers.  Or under a waterfall.  One of the reasons why our first industrial cities were on rivers.  The steam engine changed that.  With a steam engine providing our rotational motion we could put a factory pretty much anywhere.  And the power of steam could do a lot more work than a moving current of water.  So factories grew larger.  But they still relied on a rotating main drive shaft.  Then we started doing something else with our steam engines.  We began compressing air with them.

A current of air can fill masts of sails and push ships across oceans.  Air has mass.  So moving air has energy.  We’ve used windmills to turn millstones to crush our wheat.  Where a large force of a slow moving wind current filled a sail.  And pushed.  But these small currents of air required large sails.  If we compressed that volume of air down and pushed it through a very small air hose we could get a force at the end of that hose similar to what we got with a sail catching a large volume of air.  This allowed us to create rotational motion at a workstation.  Without the need of a rotating main drive shaft.  We could connect an air hose to a handheld drill.  And the compressed air in the air hose could direct a jet of high pressure air onto an ‘air-wheel’ inside the handheld drill.  Which spun the ‘air-wheel’ at a very high rpm.  Spinning the drill bit at a very high rpm.

Compressed air was a great advancement over a rotating main drive shaft.  Instead of belts and pulleys connecting to the main shaft you just had to plug in your pneumatic tool to an air line.  The steam engine’s rotational motion would drive an air compressor.  Typically turning a crankshaft with two pistons attached to it.  When a piston moves down the cylinder it draws air into the cylinder.  When the piston moves up it compresses the air in the cylinder.  The compressed air exits the cylinder and enters a large air tank.  From this air tank they run a network of pipes throughout the factory.  From these pipes hang air hoses with fittings that prevent the air from leaking out.  Keeping the whole system charged under pressure.  Then a worker takes his pneumatic tool.  Plugs it into the fitting on a hanging air hose.  As they snapped together you’ll hear a rush of air blow out.  But once they snap together the joined fittings became airtight.  When the worker presses the trigger on the pneumatic tool the compressed air blows out at a very high current.  Spinning an ‘air-wheel’ that provides useful rotational
motion.

Electric Power generated Rotational Motion eliminated the need of Steam Engines and Compressed Air Systems

As good as this was there were some drawbacks.  It takes time to produce steam when you first start up a steam engine.  Once you have built up steam pressure then you can start producing rotational motion so the air compressor can start compressing air.  This takes time, too.  Then you need a lot of piping to push that air through.  A piping system than can leak.  It was a great system.  But there was room for improvement.  And this last improvement we made was so good that we haven’t made another in over 100 years.  A new way to provide rotational motion at a workstation.  Without requiring a steam boiler.  And air compressor.  Or a vast piping system charged with air pressure.  Something that allows us to plug in and go right to work.  Without waiting for steam or air pressure to build.  And that last advancement was, of course, electric power.

When voltage (force) pushes an electrical current through a wire we get useable power.  Generators at a distant power plant produce voltages that push current through wires.  And these wires can run anywhere.  In the air.  Or underground.  They can travel great distances at dangerous high voltages and low currents.  And we can use transformers to change them to a safer low voltage and a higher current in our factories.  And our homes.  Where we can use that force and current to produce useful rotational motion.  Using electric and magnetic fields inside an electrical motor.

Animals were a poor source of rotational power.  The windmill and the waterwheel were better.  The windmill could go anywhere but the rotational motion was only available when the wind blew.  Waterwheels provided continuous rotational motion but they only worked where there was moving water.  Keeping our early factories on the rivers.  The steam engine let us build factories where there was no moving water.  While an air compressor driven by a steam engine made it much easier to transfer power form the power source to the workstation.  While electric power made that transfer easier still.  It also eliminated the need of the steam engine and the pneumatic piping system.  Allowing us to create rotational motion right at the point of work.  With the ease of plugging in.  And pressing a trigger.  Allowing machines to enter our homes to make our lives easier.  Like the vacuum cleaner.  The clothes washer.  And the air conditioner.  None of which your average homeowner could operate if we depended on a main drive shaft in our house.  Or a steam engine driving a pneumatic system.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 26th, 2012

Technology 101

(Original published December 21st, 2011)

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Waterwheel, Rotational Motion, Reciprocal Motion, Steam Engine, Internal Combustion Engine and Hydraulic Brakes

Posted by PITHOCRATES - December 5th, 2012

Technology 101

To Keep People on Trains they Undercharge Passengers and make up the Difference with Government Subsidies

We built some of our first factories on or near a river.  Where we could use that river’s current to turn a waterwheel.  To provide a rotational motion that could do work for us.  We transmitted that rotational motion via a main drive shaft through a factory where it could drive machinery via belts and pulleys.  Once we developed the steam engine to provide that rotational motion we could move our factories anywhere.  Not just on or near a river.  Giving us greater freedom.  And permitting greater economic growth.  As we put those steam engines onto rails.  That transported freight and people all across the country.

Trains are nice.  But expensive.  To go anywhere on a train you need train tracks going there.  But train tracks are incredibly expensive to lay.  And maintain.  If you ever stared at a set of train tracks you probably noticed something.  There aren’t a lot of trains going by on them.  When a train stops you when you’re running late or bringing home dinner it may feel like trains are always stopping you.  But if you parked at those same tracks for a few hours you wouldn’t see a lot of trains.  Because even the most polished rails (the more train traffic the more polished the rails) are unused more than they are used.

This is why trains are very expensive.  Tracks cost a lot of money to lay and maintain.  Costs that a railroad has to recoup from trains using those rails.  And when you don’t have a lot of trains on those rails you have to charge a lot for the trains that do travel on them.  A mile-long train pulling heavy freight can pay a lot of revenue.  And make a railroad profitable.  But passenger trains are not a mile long.  And carry few people.  Which means to make money on a passenger train you’d have to charge more for a ticket than people would pay.  To keep people on trains, then, they have to undercharge passengers.  And make up the difference with government subsidies.

A Crank Shaft and Combustion Timing takes Reciprocal Motion of Pistons and Converts it into Rotational Motion

This is why people drive places instead of taking the train.  It’s far less expensive to take the car.  And there are roads everywhere.  Built and maintained by gas taxes, licenses and fees.  And if you’ve ever driven on a road you probably noticed that there are a lot of cars, motorcycles, trucks and buses around you.  With so many vehicles on the roads they each can pay a small amount to build and maintain them.  Which is something the railroads can’t do.  Only trains can travel on train tracks.  But cars, motorcycles, trucks and buses can all travel on roads.  This is why driving a car is such a bargain.  Economies of scale.

To operate a train requires a massive infrastructure.  Dispatchers control the movement of every train.  Tracks are broken down into blocks.  The dispatchers allow only one train in a block at a time.  They do this for a couple of reasons.  Trains don’t have steering wheels.  And can take up to a mile to stop.  So to operate trains safely requires keeping them as far apart from each other as possible.  Traveling on roads is a different story.  There are no dispatchers separating traffic.  Cars, motorcycles, trucks and buses travel very close together.  Starting and stopping often.  Traveling up to high speeds between traffic lights.  With motorcycles and cars weaving in and out among trucks and buses.  Avoiding traffic and accidents by speeding up and slowing down.  And steering.

Driving a car today is something just about anyone 16 and older can do.  Thanks to the remarkable technology that makes a car.  Starting with the internal combustion engine.  The source of power that makes everything possible.  Just like those early waterwheels the source of that power is rotational motion.  But instead of a river providing the energy an internal combustion engine combusts gasoline to push pistons.  A crank shaft and combustion timing takes that reciprocal motion of the pistons and converts it into rotational motion.  Spinning a drive shaft that provides power to drive the car.  As well as power all of its accessories.

The Friction of Brake Shoe or Pad on Steel slows the Car converting Kinetic Energy into Heat

The first cars required a lot of man-power.  It took great strength to rotate the hand-crank to start the engine.  Sometimes the engine would spit and cough.  And kick back.  Breaking the occasional wrist.  Once started it took some leg-power to depress the clutch to shift gears.  It took a little upper body strength to turn the steering wheel.  And some additional leg-power to apply the brakes to stop the car.  In time we replaced the hand-crank with the electric starter.  We replaced the clutch and gearbox with the automatic transmission.  We added power steering and power breaks to further reduce the amount of man-power needed to drive a car.  Today a young lady in high heels and a miniskirt can drive a car as easily and as expertly as the first pioneers who risked bodily harm to drive our first cars.

The internal combustion engine can spin a crankshaft very fast and accelerate a car to great speeds.  Which is good for darting in and out of traffic.  But traffic occasional has to stop.  Which is easier said than done.  For a heavy car moving at speed has a lot of kinetic energy.  You can’t destroy energy.  You can only convert it.  And in the case of slowing down a car you have to convert that kinetic energy into heat.  When you press the brake pedal you force hydraulic fluid from a master cylinder to small cylinders at each wheel.  As fluids cannot compress when you apply a force to the fluid that force is transmitted to something than can move.  In the case of stopping a car it is either a brake shoe that presses against the inside of the car’s wheels.  Or a caliper that clamps down on a disc.  The friction of brake shoe or pad on steel slows the car.  Converting that kinetic energy into heat.  In some cases of excessive braking (on a train or a plane) the heat can be so excessive that the wheels or discs glow red.

So as the internal combustion engine and the brakes play their little games of speeding up and slowing down a car the rotational power of the crankshaft drives other accessories.  Such as power steering.  Where a belt and pulley transfers that rotational power to a power steering pump.  The pump pushes fluid to the steering gear to assist in turns.  Another belt and pulley connects an alternator to the crankshaft to produce electricity to provide power for the car’s electrical systems.  And to charge the battery so it can spin the automatic starter.  Another belt and pulley connects another compressor to the crankshaft.  This one for air conditioning.  That allows us to alight from our cars shower-fresh on the hottest and most humid days of the year.  And, finally, antifreeze removes the heat of combustion from the internal combustion engine and transfers it to a heating core inside the passenger compartment.  Allowing a warm and comfortable drive home during the coldest of days.  As well as keeping our windows free of snow and ice so we can see to drive safely on our way home.  Through bumper to bumper traffic.  Something we do day after day with the ease of doing the laundry.  Thanks to the remarkable technology that we take for granted that makes a car.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , ,

Animal Power, Waterwheel, Ship Transport, Steam Engine, Railroad, Steel Industry, Robotics, Rust Belt and Minimills

Posted by PITHOCRATES - November 14th, 2012

Technology 101

Rent-Seeking Captains of Industry and Commerce give Capitalism a Bad Name

Once upon a time you lived, worked and died all within a short walk from each other.  In feudalism people owned land and lived well.  The landed aristocracy.  And other people (the peasants) worked the land.  But did not live as well as those who owned it.  For it was back-breaking work for long hours with no respite except in death.  For those who worked the land belonged to the land.  Just as the trees and fields and rivers did.  Peasants belonged to the land and the land belonged to the landowner.  The peasants couldn’t leave.  And they couldn’t work hard to provide a better life for their children.  For they were bond to the land as their patents were.  With no choice but to work the land like their parents did.

This was how life was before we started to use power to make our work easier.  We had long been using animal power to do things we didn’t have the strength or the endurance to do.  Such as pulling a plow.  Or a wagon full of goods.  Or to travel great distances more quickly than we could by walking.  Harnessing the power of moving water changed all of that.  For a river moves constantly.  And when you place a waterwheel in moving water you can convert the linear motion of the water into rotational motion.  This rotational motion could turn a main shaft running though a factory.  Belts and pulleys could transfer this power to workstations throughout the factory floor.  And these powered workstations could do far more work than a person could.  Lumberjacks could transport logs down a river to a lumber mill.  Where a waterwheel could spin a saw that made lumber out of those logs at such a rate that great cities could arise around these mills.  Cities with other factories powered by waterwheels.  And homes.

So it’s no surprise that our early cities grew up on rivers.  Both for water power.  And the ability to use them to ship bulk goods.  Ship transport.  Something even animals weren’t good at.  It is in these cities that wealth and political power grew.  Centers of industry and commerce.  Creating great wealth for those who controlled the resources that made all of that possible.  So another aristocracy grew.  Rent-seeking captains of industry and commerce.  Who give capitalism a bad name.  Who use their political power to maximize their profits.  And buy favors from those in power to protect their particular interests.  Such as using the power of government to create monopolies for themselves.  But advancing technology made that harder to do.  Especially the steam engine.  And the railroad.

The Steel and Heavy Manufacturing Industries required a Massive Infrastructure and Regionally Located Raw Materials

Control of rivers, ports and harbors provided a great opportunity to amass wealth at other people’s expense.  For when economic activity centered on water it made land around that water very valuable.  Which concentrated wealth and power on the rivers.  Until the steam engine replaced the waterwheel.  And the railroad provided a way to transport people and goods inland.  So not only did cities grow up along the waterways they grew up along the rail lines.  Those controlling these resources still had great wealth and power.  But they also offered competition.  And more economic liberty.  For while there can only be one Tennessee River flowing through Chattanooga, Tennessee, there can be more than one railroad running through Chattanooga.  Which made Chattanooga an important city to hold during the American Civil War.  For there was a great rail junction in that city.  Giving anyone who controlled the city access to any part of the Confederacy.

While the steam engine and railroad allowed industries to grow anywhere in the country some industries still clustered in regional areas.  Such as the steel industry.  It required three ingredients to make steel.  Iron ore, coke (coal cooked into hard charcoal briquettes) and limestone.  To make steel you use 6 parts iron ore, 2 parts coke and 1 part limestone.  Iron ore was plentiful around Lake Superior.  Because it takes a lot of iron ore and a lot of iron ore is located around Lake Superior the steel makers built their mills long the Great Lakes.  In Milwaukee.  Chicago.  Gary.  Detroit.  Toledo.  Cleveland.  Or in places like Pittsburgh where coal and iron ore deposits surround the city.  These cities made up the Manufacturing Belt.  Places with access to bulk ore shipping (on Great Lakes freighter or river barge).  And where the steel mills arose so did heavy industry that built things from that steel.  From structural steel.  To automobiles.

For a while these new industries dominated the economic landscape.  Big, heavy industries that couldn’t move.  Concentrating money and political power.  Giving rise to organized labor.  Who took advantage of the fact that these heavy industries could not move.  Negotiating lucrative union contracts.  With generous pay and benefits.  Raising the price of steel and the things we made from steel.  Like automobiles.  Making the rank and file like rent-seekers of old.  Looking to personally benefit from their near-monopoly conditions.  Like those early captains of industry and commerce.  Life was good for awhile for the rank and file.  Who lived very well.  And better than most American workers.  Thanks to those monopoly-like conditions in these steel and heavy manufacturing industries.  Allowing them to charge high prices for their goods to pay for those generous pay and benefits.  As there was no competition.  For the steel and heavy manufacturing industries required a massive infrastructure and an abundant supply of regionally located raw materials, making it very difficult for a new competitor to open for business.  At least, in the United States.

High Costs and Low Efficiencies have shuttered most of America’s Steel Making Past

Foreign competition changed all that.  And large ocean-going ships.  So new industries in other countries with lower labor costs could manufacture these goods and ship them to the United States.  And did.  Challenging the monopoly-like conditions of the rent-seeking steel and heavy manufacturing industries.  So the rent-seekers turned to government for protection.  And got it.  Import tariffs.  Which raised the price of those imported goods to the higher price level of the domestic goods.  Which did two things.  Insulated the domestic manufacturers from market pressures allowing them to continue with the status quo.  And forced the foreign manufacturers to find less costly and more efficient ways to make their goods to counter those import tariffs.

So what happened?  Technology advanced in these industries overseas while they stagnated in the US.  The US didn’t invest in new technologies like they did in the previous century to find better ways to do things.  Because they didn’t have to.  While the foreign competitors worked harder to find better ways to do things.  Because they had to.  As they weren’t insulated from market forces.  The Japanese invested in robotics.  Transforming their auto industry.  Improving quality and lowering costs.  Making their cars as good if not better than the Americans did.  And selling them at a competitive price even with those import protections.  So what did these US actions to protect the domestic manufacturers do?  Changed the Manufacturing Belt to the Rust Belt.

The big steel cities in America are no more.  High costs and low efficiencies have shuttered most of America’s steel making past.  Gone is the era of the sprawling steel mill.  Today it’s the minimill and continuous casting.  Small and efficient steel mills with small labor forces that can make small batches.  Thanks to their electric arc furnaces that are easy to turn on and off.  Unlike the big blast furnaces that took a while to reach operating temperatures and when they did they didn’t shut them down for years.  Making it difficult to adjust to falling demand.  Like the minimills could.  Which helped save the steel industry by finally adopted technology that allowed it to sell at market prices.  Making it harder for the rent-seekers these days.  But better for consumers.  Because of this relentless march of technology.  That allows us to continuously find better ways to do things.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , ,

Conservation of Energy, Potential Energy, Kinetic Energy, Waterwheels, Water Turbine, Niagara Falls, Dams, and Hydroelectric Power

Posted by PITHOCRATES - July 25th, 2012

Technology 101

Roller Coasters use Gravity to Convert Energy back and forth between Potential Energy and Kinetic Energy

We cannot destroy energy.  All we can do is convert it.  It’s a law of physics.  The law of conservation of energy.  A roller coaster shows this.  Where roller coasters move by converting potential energy into kinetic energy.  And then by converting kinetic energy back into potential energy.

The best roller coasters race down tall inclines gaining incredible speed.  The taller the coaster the faster the speed.  That’s because of potential energy (stated in units of joules).  Which is equal to the mass times the force of gravity times the height.  The last component is what makes tall roller coasters fast.  Height.  As the cars inch over the summit gravity begins pulling them down.  And the longer gravity can pull them down the more speed they can gain.  At the bottom of the hill the height is zero so the potential energy is zero.  All energy having been converted into kinetic energy (also stated in units of joules).

Roller coasters travel the fastest at the lowest points in the track.  Where potential energy equals zero.  While kinetic energy is at its highest.  Which is equal to one half times the mass times the velocity squared.  So the higher the track the more time gravity has to accelerate these cars.  At their fastest speed they start up the next incline.  Where the force of gravity begins to pull on them.  Slowing them down as they climb up the next hill.  Converting that kinetic energy back into potential energy.  When they crest the hill for a moment their speed is zero so their kinetic energy is zero.  All energy having been converted back into potential energy.  Where gravity tugs those cars down the next incline.  And so on up and down each successive hill.  Where at all times the sum of potential energy and kinetic energy equals the same amount of joules.  Maximum potential energy is at the top.  Maximum kinetic energy is at the bottom.  And somewhere in the middle they each equal half of their maximum amounts.

(This is a simplified explanation.  Additional forces are ignored for simplicity to illustrate the relation between potential energy and kinetic energy.)

We build Dams on Rivers  to do what Niagara Falls does Naturally

So once over the first hill roller coasters run only on gravity.  And the conversion of energy from potential to kinetic energy and back again.  Except for that first incline.  Where man-made power pulls the cars up.  Electric power.  Produced by generators.  Spun by kinetic energy.  Produced from the expanding gases of combustion in a natural gas-powered plant.  Or from high-pressure steam produced in a coal-fired power plant or nuclear power plant.  Or in another type of power plant that converts potential energy into kinetic energy.  In a hydroelectric dam.

Using water power dates back to our first civilizations.  Then we just used the kinetic energy of a moving stream to turn a waterwheel.  These waterwheels turned shafts and pulleys to transfer this power to work stations.  So they couldn’t spin too fast.  Which wasn’t a problem because people only used rivers and streams with moderate currents.  So these wheels didn’t spin fast.  But they could turn a mill stone.  Or run a sawmill.  With far more efficiency than people working with hand tools.  But there isn’t enough energy in a slow moving river or stream to produce electricity.  Which is why we built some of our first hydroelectric power plants at Niagara Falls.  Where there was a lot of water at a high elevation that fell to a lower elevation.  And if you stick a water turbine in the path of that water you can generate electricity.

Of course, there aren’t Niagara Falls all around the country.  Where nature made water fall from a high elevation to a low elevation.  So we had to step in to shape nature to do what Niagara Falls does naturally.  By building dams on rivers.  As we blocked the flow of water the water backed up behind the dam.  And the water level climbed up the river banks to from a large reservoir.  Or lake.  Raising the water level on one side of the dam much higher than the other side.  Creating a huge pool of potential energy (mass times gravity times height).  Just waiting to be converted into kinetic energy.  To drive a water turbine.  The higher the height of the water behind the dam (or the higher the head) the greater the potential energy.  And the greater the kinetic energy of the water flow.  When it flows.

Hydroelectric Power is the Cleanest and Most Reliable Source of Renewable Energy-Generated Power

Near the water level behind the dam are water inlets into channels through the dam or external penstocks (large pipes) that channels the water from the high elevation to the low elevation and into the vanes of the water turbine.  The water flows into these curved vanes which redirects this water flow down through the turbine.  Creating rotational motion that drives a generator.  After exiting the turbine the water discharges back into the river below the dam.

Our electricity is an alternating current at 60 hertz (or cycles per second).  These turbines, though, don’t spin at 60 revolutions per second.  So to create 60 hertz they have to use different generators than they use with steam turbines.  Steam turbines spin a generator with only one rotating magnetic field to induce a current in the stator (i.e., stationary) windings of the generator.  They can produce an alternating current at 60 hertz because the high pressure steam can spin these generators at 60 revolutions per second.  The water flowing through a turbine can’t.  So they add additional rotational magnetic fields in the generator.  Twelve rotational magnetic fields can produce 60 hertz of alternating current while the generator only spins at 5 revolutions per second.  Adjustable gates open and close to let more or less water to flow through the turbine to maintain a constant rotation.

The hydroelectric power plant is one of the simplest of power generating plants.  There is no fuel needed to generate heat to make steam.  No steam pressure to monitor closely to prevent explosions.  No fires to worry about in the mountains of coal stored at a plant.  No nuclear meltdown to worry about.  And no emissions.  All you need is water.  From snow in the winter that melts in the spring.  And rain.  Not to mention a good river to dam.  If the water comes the necessary head behind the dam will be there to spin those turbines.  But sometimes the water isn’t there.  And the dams have to shut down generators because there isn’t enough water.  But hydroelectric power is still the cleanest and most reliable source of electric power generated from renewable energy we have.  But it does have one serious drawback.  You need a river to dam.  And the best spots already have a dam on them.  Leaving little room for expansion of hydroelectric power.  Which is why we generate about half of our electric power from coal.  Because we can build a coal-fired power plant pretty much anywhere we want to.  And they will run whether or not we have snow or rain.  Because they are that reliable.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 21st, 2011

Technology 101

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,