Electric Power, Alternating Current, Transformers, Magnetic Flux, Turns Ratio, Electric Panel and Circuit Breakers

Posted by PITHOCRATES - February 6th, 2013

Technology 101

AC Power is Superior to DC Power because it can Travel Farther and it Works with Transformers

Thanks to Nikola Tesla and his alternating current electric power we live in the world we have today.  The first electric power was direct current.  The stuff that Thomas Edison gave us.  But it had some serious drawbacks.  You needed a generator for each voltage you used.  The low-voltage of telephone systems would need a generator.  The voltage we used in our homes would need another generator.  And the higher voltages we used in our factories and businesses would need another generator.  Requiring a lot of power cables to hang from power poles along our streets.  Almost enough to block out the sun.

Another drawback is that direct currents travel a long way.  And spend a lot of time moving through wires.  Generating heat.  And dropping some power along the way due to the resistance in the wires.  Greatly minimizing the area a power plant can provide power to.  Requiring many power plants in our cities and suburbs.  Just imagine having three coal-fired power plants around your neighborhood.  The logistics and costs were just prohibitive for a modern electric world.  Which is why Thomas Edison lost the War of Currents to Nikola Tesla.

So why is alternating current (AC) superior to direct current (DC) for electric power?  AC is more like a reciprocating motion in an internal combustion engine or a steam locomotive.  Where short up & down and back & forth motion is converted into rotation motion.  Alternating current travels short distances back and forth in the power cables.  Because they travel shorter distances in the wires they lose less power in power transmission.  In fact, AC power lines can travel great distances.  Allowing power plants tucked away in the middle of nowhere power large geographic areas.  But there is another thing that makes AC power superior to DC power.  Transformers.

The Voltage induced onto the Secondary Windings is the Primary Voltage multiplied by the Turns Ratio

When an alternating current flows through a coiled wire it produces an alternating magnetic flux.  Magnetic flux is a measure of the strength and concentration of the magnetic field created by that current.  When this flux passes through another coiled wire it induces a voltage on that coil.  This is a transformer.  A primary and secondary winding where an alternating current applied on the primary winding induces a voltage on the secondary winding.  Allowing you to step up or step down a voltage.  Allowing one generator to produce one voltage.  While transformers throughout the power distribution network can produce the many voltages needed for doorbells, electrical outlets in our homes and the equipment in our factories and businesses.  And any other voltage for any other need.

We accomplish this remarkable feat by varying the number of turns in the windings.  If the number of turns is equal in the primary and the secondary windings then so is the voltage.  If the number of turns in the primary windings is greater than the number of turns in the secondary windings the transformer steps down the voltage.  If the number of turns in the secondary windings is greater than the number of turns in the primary windings the transformer steps up the voltage.  To determine the voltage induced onto the secondary windings we divide the secondary turns by the primary turns.  Giving us the turns ratio.  Multiplying the turns ratio by the voltage applied to the primary windings gives us the voltage on the secondary windings.  (Approximately.  There are some losses.  But for the sake of discussion assume ideal conditions.)

If the turns ratio is 20:1 it means the number of turns on the primary windings is twenty times the turns on the secondary windings.  Which means the voltage on the primary windings will be twenty times the voltage on the secondary windings.  Making this a step-down transformer.  So if you connected 4800 volts to the primary windings the voltage across the secondary windings will be 240 volts (4800/20).  If you attached a wire to the center of the secondary coil you can get both a 20:1 turns ratio and a 40:1 turns ratio.  If you measure a voltage across the entire secondary windings you will get 240 volts.  If you measure from the center of the secondary and either end of the secondary windings you will get 120 volts.

The Power Lines running to your House are Two Insulated Phase Conductors and a Bare Neutral Conductor

This is a common transformer you’ll see atop a pole in your backyard.  Where it is common to have 4800-volt power lines running at the top of poles running between houses.  On some of these poles you will see a transformer mounted below these 4800-volt lines.  The primary windings of these transformers connect to the 4800-volt lines.  And three wires from the secondary windings connect to wires running across these poles below the transformers.  Two of these wires (phase conductors) connect to either end of the secondary windings.  Providing 240 volts.  The third wire attaches to the center of the secondary windings (the neutral conductor).  We get 120 volts between a phase conductor and the neutral conductor.

The power lines running to your house are three conductors twisted together in a triplex cable.  Two insulated phase conductors.  And a bare neutral conductor.  These enter your house and terminate in an electric panel.  The two phase conductors connect to two bus bars inside the panel.  The neutral conductor connects to a neutral bus inside the panel.  Each bus feeds circuit breaker positions on both sides of the panel.  The circuit breaker positions going down the left side of the panel alternate between the two buss bars.  Ditto for the circuit breaker positions on the right side.

A single-pole circuit breaker attaches to one of the bus bars.  Then a wire from the circuit breaker and a wire from the neutral bus leave the panel and terminate at an electrical load.  Providing 120 volts to things like wall receptacles where you plug things into.  And your lighting.  A 2-pole circuit breaker attaches to both bus bars.  Then two wires from the circuit breaker leave the panel and attach to an electrical load.  Providing 240 volts to things like an electric stove or an air conditioner.  Then a reciprocating (push-pull) alternating current runs through these electric loads.  Driven by the push-pull between the two bus bars.  And between a bus bar and the neutral bus.  Which is driven by the push-pull between the conductors of the triplex cable.  Driven by the push pull of secondary windings in the transformer.  Driven by the push-pull of the primary windings.  Driven by the push-pull in the primary cables connected to the primary windings.  And all the way back to the push-pull of the electric generator.  All made possible thanks to Nikola Tesla.  And his alternating current electric power.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 26th, 2012

Technology 101

(Original published December 21st, 2011)

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Thomas Edison, Patents, Intellectual Property Rights, Nikola Tesla, George Westinghouse, DC, AC and the War of Currents

Posted by PITHOCRATES - March 27th, 2012

History 101

Thomas Edison protected his Intellectual Property Rights with over 1,000 Patents

Thomas Edison was a great inventor.  A great entrepreneur.  But he wasn’t a great scientist or engineer.  He was home-schooled by his mom.  And didn’t go to college.  But he read a lot.  And loved to tinker.  He grew up in Port Huron, Michigan.  At one end of the train line that ran between Port Huron and Detroit.  Where he sold newspapers and other things to commuters during the Civil War.  Then he saved the life of some kid.  Pulled him out of the way of a runaway boxcar.  The kid’s dad ran the train station.  Out of gratitude for saving his son’s life he taught the young Edison Morse Code.  And trained him to be a telegraph operator.  He mastered it so well that Edison invented a better telegraph machine.  The Quadruplex telegraph.  Because he liked to tinker.

What made him a great entrepreneur and not a great scientist or engineer is that his inventions had a commercial purpose.  He didn’t invent to solve life’s great mysteries.  He invented to make money.  By creating things so great that people would want them.  And pay money for them.  He also had an eye on production costs.  So he could build these things the people wanted at affordable prices.  For if they were too expensive the people couldn’t buy them.  And make him rich.  So his inventions used technology to keep production costs down while keeping consumer interest high.  Because of the profit incentive.  But the POSSIBILITY of profits wasn’t enough to push Edison to set up his invention lab.  Where he employed a team of inventors to work full time inventing things.  And figuring out how to mass-produce inventions that made everyone’s life better.  He needed something else.  Something that GUARANTEED Edison could profit from his inventions.  The patent.  That gave the patent holder exclusive rights to profit from their invention.

Inventors and entrepreneurs spend a lot of money inventing things.  They do this because they know that they can file a patent when they invent something that people will buy.  Protecting their intellectual property rights.  So they alone can profit from the fruit of all their labors.  And Edison was one of these inventors.  One of the most prolific inventors of all time.  Filing over 1,000 patents.  Including one on the incandescent light bulb.  Which was going to replace gas lamps and candles.  And provided a need for another new invention.  Electric power distribution.  Something else he spent a lot of time tinkering with.  Producing electrical generators.  And an electric power distribution system.  Which was going to make him an even richer man.  As he held the patents for a lot of the technology involved.  However, he was not to become as rich as he had hoped on his electric power distribution system.  Not for any patent infringements.  But because of a mistreated former employee who had a better idea.

Thomas Edison and George Westinghouse battled each other in the War of Currents

Nikola Tesla was a brilliant electrical engineer.  But not a great entrepreneur.  So he worked for someone who was.  Thomas Edison.  Until Edison broke a promise.  He offered a substantial bonus to Tesla if he could improve Edison’s electric power generating plants.  He did.  And when he asked for his bonus Edison reneged on his promise.  Telling the immigrant Tesla that he didn’t understand American humor.  Angry, Tesla resigned and eventually began working for George Westinghouse.  An Edison competitor.  Who appreciated the genius of Tesla.  And his work.  Especially his work on polyphase electrical systems.  Using an alternating current (AC).  Unlike Edison’s direct current (DC).  Bringing Edison and Tesla back together again.  In war.

Direct current had some limitations.  The chief being that DC didn’t work with transformers.  While AC did.  With transformers you could change the voltage of AC systems.  You could step the voltage up.  And step it back down.  This gave AC a huge advantage over DC.  Because power equals current multiplied by voltage (P=I*E).  To distribute large amounts of power you needed to generate a high current.  Or a high voltage.  Something both DC and AC power can do.  However, there is an advantage to using high voltages instead of high currents.  Because high currents need thicker wires.  And we make wires out of copper or aluminum.  Which are expensive.  And the DC wires have to get thicker the farther away they get from the generator plant.  Meaning that a DC generating plant could only serve a small area.  Requiring numerous DC power plants to meet the power requirements of a single city.  Whereas AC power could travel across states.  Making AC the current of choice for anyone paying the bill to install an electric distribution system.

So the ability to change voltages is very beneficial.  And that’s something DC power just couldn’t do.  What the generator generated is what you got.  Not the case with AC power.  You can step it up to a higher voltage for distribution.  Then you can step it down for use inside your house.  Which meant a big problem for Edison.  For anyone basing their decision on price alone would choose AC.  So he declared war on AC power.  Saying that it was too dangerous to bring inside anyone’s house.  And he proved it by electrocuting animals.  Including an elephant.  And to show just how lethal it was Edison pushed for its use to replace the hangman’s noose.  Saying that anything as deadly as what states used to put prisoners to death was just too deadly to bring into anyone’s house.  But not even the electric chair could save Edison’s DC power.  And he lost the War of Currents.  For Tesla’s AC power was just too superior to Edison’s DC power not to use. 

Nikola Tesla was a Brilliant Engineer who Preferred Unraveling the Mysteries of the Universe over Business

George Westinghouse would get rich on electrical distribution.  Thanks to Nikola Tesla.  And the patents for the inventions he could have created for Thomas Edison.  If he only recognized his genius.  Which he lamented near death as his greatest mistake.  Not appreciating Tesla.  Or his work.  But Edison did well.  As did Westinghouse.  They both died rich.  Unlike Tesla.

Westinghouse could have made Tesla a very rich man.  But his work in high voltage, high frequency, wireless power led him away from Westinghouse.  For he wanted to provide the world with free electric power.  By creating power transmitters.  That could transmit power wirelessly.  Where an electric device would have an antenna to receive this wireless power.  He demonstrated it to some potential investors.  He impressed them.  But lost their funding when they asked one question.  Where does the electric meter go?  Free electric power was a noble idea.  But nothing is truly free.  Even free power.  Because someone had to generate that power.  And if you didn’t charge those using that power how were you going to pay those generating that power?

Edison and Westinghouse were great entrepreneurs.  Whereas Tesla was a brilliant engineer.  He preferred unraveling the mysteries of the universe over business.  Tesla probably suffered from obsessive-compulsive disorder.  Think of the character Sheldon Cooper on The Big Bang Theory television sitcom.  He was a lot like that character.  Brilliant.  Odd.  And interested in little else but his work.  He lived alone.  And died alone.  A bachelor.  Living in a two-room hotel room in the last decade of his life.  Despite his inventions that changed the world.  And the fortunes he made for others.  Sadly, Tesla did not die a rich man.  Like Edison and Westinghouse.  But he did live a long life.  And few men or women changed the world like he did.  A brilliant mind that comes around but once in a millennium.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 21st, 2011

Technology 101

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

LESSONS LEARNED #72: “Moms are a lot like CEOs. Only with more responsibility, longer hours and less pay.” -Old Pithy

Posted by PITHOCRATES - June 30th, 2011

A Genius may have a Brilliant Idea, but it’s an Entrepreneur that brings it to Market

A CEO is a lot like an entrepreneur.  They’re both a cut above the rest.  And can do what few can do.  Bring two worlds together.  The theoretical world inhabited by great thinkers and inventors.  And the practical world inhabited by people who act.  Who take the things the great thinkers and inventors create and give them to us.   There is a difference between the people that inhabit these worlds.  And most can only live in one or the other.  But CEOs and entrepreneurs can live in both.  That’s what makes them special.  Thinkers and inventors possess a genius of theoretical creativity.  But they can do little with their idea.  The action people can build great things (cars, airplanes, buildings, power plants, cell phones, etc.) but only from a construction plan.  Someone else has to have an idea and think and create the construction plan before they can build.  These are the two worlds.  The genius.  And the builders.  And it is the CEO and entrepreneur that bring these two worlds together.

Nikola Tesla was a genius.  A brilliant theoretical thinker.  He created the world in which we live.  But do you know who he is?  What he created?  Probably not.  Unless you’re a Croat.  Because there are probably a lot of statues of him in Croatia. Because he was born there to Serbian parents.  He eventually moved to America.  Got a job with a guy name Thomas Edison.  Who didn’t appreciate his genius.  Or his one particular ‘crazy’ idea.  But George Westinghouse did. 

That ‘crazy’ idea is the AC power we use today.  Thomas Edison was building DC power plants and a DC electric grid.  Despite all the failings of DC distribution (DC power doesn’t travel far requiring lots of generating plants, different voltages have to have their own generating plant, large power loads require very thick and expensive copper wires, etc.).  There was already a DC electrical infrastructure.  And it was Edison’s.  Which he wanted to expand because it would pay him well.

But Tesla’s AC system was better.  Because it could use transformers.  One power generating plant could provide power at a variety of voltages.  You just needed a transformer to get the voltage you wanted.  Also, electrical power is the product of voltage and current.  High power, then, requires either a high voltage or a high current.  High currents require thick, expensive copper wires.  So high voltage was the way to go.  It allowed power to travel farther over thinner wires.  Therefore, it required fewer generating plants.  And a single electric grid (not one for each voltage).  AC power was much more economical than DC power.  And George Westinghouse saw that.  And took Tesla’s brilliant idea and built the AC power generation and distribution system we use today.

The Business of Beautiful, Estée Lauder

You see, Tesla was at home in the lab.  He was a scientist.  Not a salesman.  That’s why he wasn’t an entrepreneur.  Because, just like being a CEO, you need sales skills to be an entrepreneur.  Because you are the number one sales person in your business.  And Edison and Westinghouse were great salesmen.  That’s why they brought a lot of Tesla’s great inventions to market.  And why Tesla did not.  He was just not a sales person.

But Estée Lauder was.  She was always selling.  And creating.  She was the classical entrepreneur.  Her uncle was in the chemistry business making beauty products.  Which fascinated her from a young age.  He taught her the chemistry.  Taught her how to make the products.  How to use the products.  And she did.  Loved them.  And started selling them.  With a passion.

She started creating her own products.  Using her own kitchen as her laboratory.  When not tending to her two sons.  She demonstrated how to use her products.  Gave away free samples.  And sold.  She was always selling.  She started out small.  By herself.  From these humble beginnings she grew to dominate the industry.  She was relentless.  She worked herself to the premier counter space in department stores by redefining the way cosmetics were sold.  Starting with Saks Fifth Avenue in New York.  She visited each counter to ensure they were meeting her high standards.  She gave away free samples.  She demonstrated.  She touched.  Personally applying products on customers.  That’s why when you walk into a department store you’ll see the Estée Lauder counter first.  And you’ll see all the counters selling the same way.  Giving away free samples.  Demonstrating products.  Showing how to apply products.  The Estée Lauder way.

One Smart Cookie, that Mrs. Fields

Debbi Fields liked to bake cookies.  She married young at 19.  To a Stanford graduate.  And aspiring financial consultant.  And about a year later decided to go into the cookie business.  After an incident at a party with her husband and a lot of his snobby associates.  She apparently mispronounced a word.  Said ‘orientated’ instead of ‘oriented’.  A snob pointed out her faux pas.  Sending her home in tears.  Didn’t much like that experience.  And decided to be something more than a ‘just’ a housewife.  Not that there was anything wrong with that.  And she would love being a housewife.  She would raise 5 daughters.  And add another 5 stepchildren in a second marriage.  But the snobs in her husband’s circle did look down on that particular institution.  It was so old fashioned.  It wasn’t progressive.  It wasn’t what people in their circles did.  So they acted like real asses.

Yet they liked her cookies.  Loved them.  Her husband would take them to work.  Where they were a big hit.  Soft and chewy.  Gourmet.  They were different.  When she asked them if she should go into the cookie business, they said it was a bad idea.  The conventional wisdom said crispy cookies were the way to go.  People didn’t want to buy soft and chewy.  They said as they stuffed their mouths with soft and chewy cookies.  And there were others who told her not to do it.  Even her husband doubted her.  But he loved her.  And would support her. She had no business experience.  But she was a hard worker.  And believed in what she was doing.  She got a bank loan to open a cookie store.  Not so much because the banker believed in the business idea.  But because of the good character of her and her husband.  Whatever the outcome, the bank was willing to take a chance.  Because, success or fail, they knew they would repay the loan.

She opened her first store in a mall food court.  Did not sell a single cookie.  Until she used the Estée Lauder sales method.  She gave away free samples.  People tried.  And people liked.  Soft and chewy was a hit.  She grew the company.  Added more stores.  And made a lot of money.  She was very hands on to maintain the quality.  Again, like Estée Lauder.  She visited her stores.  To make sure they maintained her high standards.  Which is why she refused to franchise.  She was too worried about losing that quality.  Which is what made Mrs. Fields cookies better than the competition.  Her husband computerized her operation.  Adding a computer at each store.  All wired to the Internet and tied into her headquarters.  It was state of the art technology.  Allowing more growth.  While retaining full control.  The growth was fast.  Too fast.  The hands-on management didn’t work well with so many stores.  The debt started to pile up.  And then a recession hit.  Her expensive gourmet cookies became too expensive.  And people stopped buying them.  To save the company she had to sell 80% of it.  And the new owners changed the business model.  Franchised stores.  And bumped Debbie Fields from CEO.  But she remained chairman of the board.  And though only a minority shareholder, the business Debbie Fields created continues on.  Her only mistake was being so successful so fast.  And if you’re going to have a fault that’s not a bad one to have.  By the way, don’t forget that she did all of this while raising 5 daughters.  Which probably made the running of the multi-million dollar business the easy part of her life.

Entrepreneurs, CEOS and Moms

Entrepreneurs and CEOs.  They’re a different breed.  They can be both brilliant thinkers like Nikola Tesla.  And aggressive sales people like Thomas Edison and George Westinghouse.  Such as Estée Lauder.  And Debbie Fields.  These mothers dominated their industries.  And set the bar for everyone else.  Lauder built an empire that dominates still.  Fields use of technology to streamline operations is a model for business efficiency at Harvard Business School.  Two of America’s most successful entrepreneurs and CEOs.  And both were moms first.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,