Steam Locomotive

Posted by PITHOCRATES - November 13th, 2013

Technology 101

The Steam Locomotive was one of the Few Technologies that wasn’t replaced by a Superior Technology 

Man first used stone tools about two and a half million years ago.  We first controlled fire for our use about a million years ago.  We first domesticated animals and began farming a little over 10,000 years ago.  The Egyptians were moving goods by boats some 5,000 years ago.  The Greeks and Romans first used the water wheel for power about 2,500 years ago. The Industrial Revolution began about 250 years ago.  James Watt improved the steam engine about 230 years ago.  England introduced the first steam locomotive into rail service about 210 years ago. 

In the first half of the 1800s the United States started building its railroads.  Helping the North to win the Civil War.  And completing the transcontinental railroad in 1869.  By 1890 there were about 130,000 miles of track crisscrossing the United States.  With the stream locomotives growing faster.  And more powerful.  These massive marvels of engineering helped the United States to become the number one economic power in the world.  As her vast resources and manufacturing centers were all connected by rail.  These powerful steam locomotives raced people across the continent.  And pulled ever longer—and heavier—freight trains.

We built bigger and bigger steam locomotives.  That had the power to pull freight across mountains.  To race across the Great Plains.  And into our cities.  With the chugging sound and the mournful steam whistle filling many a childhood memories.  But by the end of World War II the era of steam was over.  After little more than a century.  Barely a blip in the historical record.  Yet it advanced mankind in that century like few other technological advances.   Transforming the Industrial Revolution into the Second Industrial Revolution.  Or the Technological Revolution.  That gave us the steel that built America.  Electric Power.  Mass production.  And the production line.  None of which would have happened without the steam locomotive.  It was one of the few technologies that wasn’t replaced by a superior technology.  For the steam locomotive was more powerful than the diesel-electric that replaced it.  But the diesel-electric was far more cost-efficient than the steam locomotive. Even if you had to lash up 5 diesels to do the job of one steam locomotive.

The Hot Gases from the Firebox pass through the Boiler Tubes to Boil Water into Steam

The steam engine is an external combustion engine.  Unlike the internal combustion engine the burning of fuel did not move a piston.  Instead burning fuel produced steam.  And the expansion energy in steam moved the piston.  The steam locomotive is a large but compact boiler on wheels.  At one end is a firebox that typically burned wood, coal or oil.  At the other end is the smokebox.  Where the hot gases from the firebox ultimately vent out into the atmosphere through the smokestack.  In between the firebox and the smokebox are a bundle of long pipes.  Boiler tubes.  The longer the locomotive the longer the boiler tubes. 

To start a fire the fireman lights something to burn with a torch and places it on the grating in the firebox.  As this burns he may place some pieces of wood on it to build the fire bigger.  Once the fire is strong he will start shoveling in coal.  Slowly but surely the fire grows hotter.  The hot gases pass through the boiler tubes and into the smokebox.  And up the smoke stack.  Water surrounds the boiler tubes.  The hot gases in the boiler tubes heat the water around the tubes.  Boiling it into steam.  Slowly but surely the amount of water boiled into steam grows.  Increasing the steam pressure in the boiler.  At the top of the boiler over the boiler tubes is a steam dome.  A high point in the boiler where steam under pressure collects looking for a way out of the boiler.  Turned up into the steam dome is a pipe that runs down and splits into two.  Running to the valve chest above each steam cylinder.  Where the steam pushes a piston back and forth.  Which connects to the drive wheels via a connecting rod.

When the engineer moves the throttle level it operates a variable valve in the steam dome.  The more he opens this valve the more steam flows out of the boiler and into the valve chests.  And the greater the speed.  The valve in the valve chest moved back and forth.  When it moved to one side it opened a port into the piston cylinder behind the piston to push it one way.  Then the valve moved the other way.  Opening a port on the other side of the piston cylinder to allow steam to flow in front of the piston.  To push it back the other way.  As the steam expanded in the cylinder to push the piston the spent steam exhausted into the smoke stack and up into the atmosphere.  Creating a draft that helped pull the hot gases from the firebox through the boiler tubes, into the smokebox and out the smoke stack.  Creating the chugging sound from our childhood memories.

The Challenger and the Big Boy were the Superstars of Steam Locomotives

To keep the locomotive moving required two things.  A continuous supply of fuel and water.  Stored in the tender trailing the locomotive.  The fireman shoveled coal from the tender into the firebox.  What space the coal wasn’t occupying in the tender was filled with water.  The only limit on speed and power was the size of the boiler.  The bigger the firebox the hotter the fire.  And the hungrier it was for fuel.  The bigger locomotives required a mechanized coal feeder into the firebox as a person couldn’t shovel the coal fast enough.  Also, the bigger the engine the greater the weight.  The greater the weight the greater the wear and tear on the rail.  Like trucks on the highway railroads had a limit of weight per axel.  So as the engines got bigger the more wheels there were ahead of the drive wheels and trailing the drive wheels.  For example, the Hudson 4-6-4 had two axels (with four wheels) ahead of the drive wheels.  Three axles (with 6 wheels) connected to the pistons that powered the train.  And two axels (with four wheels) trailing the drive wheels to help support the weight of the firebox.

To achieve ever higher speeds and power over grades required ever larger boilers.  For higher speeds used a lot of steam.  Requiring a huge firebox to keep boiling water into steam to maintain those higher speeds.  But greater lengths and heavier boilers required more wheels.  And more wheels did not turn well in curves.  Leading to more wear and tear on the rails.  Enter the 4-6-6-4 Challenger.  The pinnacle of steam locomotive design.  To accommodate this behemoth on curves the designers reintroduced the articulating locomotive.  They split up the 12 drive wheels of the then most powerful locomotive in service into two sets of 6.  Each with their own set of pistons.  While the long boiler was a solid piece the frame underneath wasn’t.  It had a pivot point.  The first set of drive wheels and the four wheels in front of them were in front of this pivot.  And the second set of drive wheels and the trailing 4 wheels that carried the weight of the massive boiler on the Challenger were behind this pivot.  So instead of having one 4-6-6-4 struggling through curves there was one 4-6 trailing one 6-4.  Allowing it to negotiate curves easier and at greater speeds.

The Challenger was fast.  And powerful.  It could handle just about any track in America.  Except that over the Wasatch Range between Green River, Wyoming and Ogden, Utah.  Here even the Challenger couldn’t negotiate those grades on its own.  These trains required double-heading.  Two Challengers with two crews (unlike lashing up diesels today where one crew operates multiple units from one cab).  And helper locomotives.  This took a lot of time.  And cost a lot of money.  So to negotiate these steep grades Union Pacific built the 4-8-8-4 articulated Big Boy.  Basically the Challenger on steroids.  The Big Boy could pull anything anywhere.  The Challenger and the Big Boy were the superstars of steam locomotives.  But these massive boilers on wheels required an enormous amount of maintenance.  Which is why they lasted but 20 years in service.  Replaced by tiny little diesel-electric locomotives.  That revolutionized railroading.  Because they were so less costly to maintain and operate.  Even if you had to use 7 of them to do what one Big Boy could do.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Triple Expansion Steam Engine

Posted by PITHOCRATES - November 6th, 2013

Technology 101

Pressure and Temperature have a Direct Relationship while Pressure and Volume have an Inverse Relationship

For much of human existence we used our own muscles to push things.  Which limited the work we could do.  Early river transport were barges of low capacity that we pushed along with a pole.  We’d stand on the barge and place the pole into the water and into the river bed.  Then push the pole away from us.  To get the boat to move in the other direction.

In more developed areas we may have cleared a pathway alongside the river.  And pulled our boats with animal power.  Of course, none of this helped us cross an ocean.  Only sail did that.  Where we captured the wind in sails.  And the wind pushed our ships across the oceans.  Then we started to understand our environment more.  And noticed relationships between physical properties.  Such as the ideal gas law equation:

Pressure = (n X R X Temperature)/Volume

In a gas pressure is determined my multiplying together ‘n’ and ‘R’ and temperature then dividing this number by volume.  Where ‘n’ is the amount of moles of the gas.  And ‘R’ is the constant 8.3145 m3·Pa/(mol·K).  For our purposes you can ignore ‘n’ and ‘R’.  It’s the relationship between pressure, temperature and volume that we want to focus on.  Which we can see in the ideal gas law equation.  Pressure and temperature have a direct relationship.  That is, if one rises so does the other.  If one falls so does the other.  While pressure and volume have an inverse relationship.  If volume decreases pressure increases.  If volume increases pressure decreases.  These properties prove to be very useful.  Especially if we want to push things.

Once the Piston traveled its Full Stroke on a Locomotive the Spent Steam vented into the Atmosphere 

So what gas can produce a high pressure that we can make relatively easy?  Steam.  Which we can make simply by boiling water.  And if we can harness this steam in a fixed vessel the pressure will rise to become strong enough to push things for us.  Operating a boiler was a risky profession, though.  As a lot of boiler operators died when the steam they were producing rose beyond safe levels.  Causing the boiler to explode like a bomb.

Early locomotives would burn coal or wood to boil water into steam.  The steam pressure was so great that it would push a piston while at the same time moving a connecting rod connected to the locomotive’s wheel.  Once the piston traveled its full stroke the spent steam vented into the atmosphere.  Allowing the pressure of that steam to dissipate safely into the air.  Of course doing this required the locomotive to stop at water towers along the way to keep taking on fresh water to boil into steam. 

Not all steam engines vented their used steam (after it expanded and gave up its energy) into the atmosphere.  Most condensed the low-pressure, low-temperature steam back into water.  Piping it (i.e., the condensate) back to the boiler to boil again into steam.  By recycling the used steam back into water eliminated the need to have water available to feed into the boiler.  Reducing non-revenue weight in steam ships.  And making more room available for fuel to travel greater distances.  Or to carry more revenue-producing cargo.

The Triple Expansion Steam Engine reduced the Expansion and Temperature Drop in each Cylinder

Pressure pushes the pistons in the steam engine.  And by the ideal gas law equation we see that the higher the temperature the higher the pressure.  As well as the corollary.  The lower the temperature the lower the pressure.  And one other thing.  As the volume increases the temperature falls.  So as the pressure in the steam pushes the piston the volume inside the cylinder increases.  Which lowers the temperature of the steam.  And the temperature of the piston and cylinder walls.  So when fresh steam from the boiler flows into this cylinder the cooler temperature of the piston and cylinder walls will cool the temperature of the steam.  Condensing some of it.  Reducing the pressure of the steam.  Which will push the piston with less force.  Reducing the efficiency of the engine.

There was a way to improve the efficiency of the steam engine.  By reducing the temperature drop during expansion (i.e., when it moves the piston).  They did this by raising the temperature of the steam.  And breaking down the expansion phase into multiple parts.  Such as in the triple expansion steam engine.  Where steam from the boiler entered the first cylinder.  Which is the smallest cylinder.  After it pushed the piston the spent steam still had a lot of energy in it looking to expand further.  Which it did in the second cylinder.  As the exhaust port of the first cylinder is piped into the intake port of the second cylinder.

The second cylinder is bigger than the first cylinder.  For the steam entering this cylinder is a lower-pressure and lower-temperature steam than that entering the first cylinder.  And needs a larger area to push against to match the down-stroke force on the first piston.  After it pushes this piston there is still energy left in that steam looking to expand.  Which it did in the third and largest cylinder.  After it pushed the third piston this low-pressure and low-temperature steam flowed into the condenser.  Where cooling removed what energy (i.e., temperature above the boiling point of water) was left in it.  Turning it back into water again.  Which was then pumped back to the boiler.  To be boiled into steam again.

By restricting the amount of expansion in each cylinder the triple expansion steam engine reduced the amount the temperature fell in each cylinder.  Allowing more of the heat go into pushing the piston.  And less of it go into raising the temperature of the piston and cylinder walls.  Greatly increasing the efficiency of the engine.  Making it the dominant maritime engine during the era of steam.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 26th, 2012

Technology 101

(Original published December 21st, 2011)

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Electricity, Heat Engine, Superheated Dry Steam, Coal-Fired Power Plant, Geothermal Power Plant and Waste-to-Energy Plant

Posted by PITHOCRATES - November 7th, 2012

Technology 101

(Originally published August 1, 2012)

Geothermal Power Plants and Waste-to-Energy Plants each produce less than Half of 1% of our Electricity

We produce the majority of our electricity with heat engines.  Where we boil water into steam to spin a turbine.  Or use the expanding gases of combustion to spin a turbine.  The primary heat engines we use are coal-fired power plants, natural gas-power plants and nuclear power plants.  The next big source of electricity generation is hydroelectric.  A renewable energy source.  In 2011 it produced less than 8% of our electricity.  These sources combined produce in excess of 95% of all electricity.  While renewable energy sources (other than hydroelectric) make up a very small percentage of the total.  Wind power comes in under 3%.  And solar comes in at less than 0.2% of the total.  So we are a very long way from abandoning coal, natural gas and nuclear power.

Two other renewable energy sources appear to hold promise.  Two heat engines.  One powered by geothermal energy in the earth.  The other by burning our garbage.  In a waste-to-energy plant.  These appear attractive.  Geothermal power appears to be as clean as it gets.  For this heat isn’t man-made.  It’s planet-made.  And it’s just there for the taking.  But the taking of it gets a little complicated.  As is burning our trash.  Not to mention the fact that few people want trash incinerators in their neighborhoods.  For these reasons they each provide a very small percentage of the total electric power we produce.  Both coming in at less than half of 1%.

So why steam?  Why is it that we make so much of our electrical power by boiling water?  Because of the different states of matter.  Matter can be a solid, liquid or a gas.  And generally passes from one state to another in that order.  Although there are exceptions.  Such as dry ice that skips the liquid phase.  It sublimates from a solid directly into a gas.  And goes from a gas to a solid by deposition.  Water, though, follows the general rule.  Ice melts into water at 32 degrees Fahrenheit (or 0 degrees Celsius).  Or water freezes into ice at the same temperature.  Water vaporizes into steam at 212 degrees Fahrenheit (or 100 degrees Celsius).  Or steam condenses into water at the same temperature.  These changes in the state of matter are easy to produce.  At temperatures that we can easily attain.  Water is readily available to vaporize into steam.  It’s safe and easy to handle.  Making it the liquid of choice in a heat engine.

Today’s Coal-Fired Power Plant pulverizes Coal into a Dust and Blows it into the Firebox

A given amount of water will increase about 1600 times in volume when converted to steam.  It’s this expansion that we put to work.  It’s what pushed pistons in steam engines.  It’s what drove steam locomotives.  And it’s what spins the turbines in our power plants.  The plumes of steam you see is not steam, though.  What you see is water droplets in the steam.  Steam itself is an invisible gas.  And the hotter and drier (no water) it is the better.  For water droplets in steam will pit and wear the blades on a steam turbine.  Which is why the firebox of a coal-fired plant reaches temperatures up to 3,000 degrees Fahrenheit (about 1,650 degrees Celsius).  To superheat the steam.  And to use this heat elsewhere in the power plant such as preheating water entering the boiler.  So it takes less energy to vaporize it.

To get a fire that hot isn’t easy.  And you don’t get it by shoveling coal into the fire box.  Today’s coal-fired power plant pulverizes coal into a dust and blows it into the firebox.  Because small particles can burn easier and more completely than large chunks of coal.  As one fan blows in fuel another blows in air.  To help the fire burn hot.  The better and finer the fuel the better it burns.  The better the fuel burns the hotter the fire.  And the drier the steam it makes.  Which can spin a turbine with a minimum of wear.

In a geothermal power plant we pipe steam out of the ground to spin a turbine.  If it’s hot enough.  Unfortunately, there aren’t a lot of geothermal wells that produce superheated dry steam.  Which limits how many of these plants we can build.  And the steam that the planet produces is not as clean as what man produces.  Steam out of the earth can contain a lot of contaminants.  Requiring additional equipment to process these contaminants out.  We can use cooler geothermal wells that produce wet steam but they require additional equipment to remove the water from the steam.  The earth may produce heat reliably but not water.  When we pipe this steam away the wells can run dry.  So these plants require condensers to condense the used steam back into water so we can pump it back to the well.  A typical plant may have several wells piped to a common plant.  Requiring a lot of piping both for steam and condensate.  You put all this together and a geothermal plant is an expensive plant.  And it is a plant that we can build in few places.  Which explains why geothermal power makes less than half of 1% of our electricity.

We generate approximately 87% of our Electricity from Coal, Natural Gas and Nuclear Power

So these are some the problems with geothermal.  Burning trash has even more problems.  The biggest problem is that trash is a terrible fuel.  We pulverize coal into a dust and blow into the firebox.  This allows a hot and uniform fire.  Trash on the other hand contains wet mattresses, wet bags of grass, car batteries, newspapers and everything else you’ve ever thrown away.  And if you ever lit a campfire or a BBQ you know some things burn better than other things.  And wet things just don’t burn at all.  So some of this fuel entering the furnace can act like throwing water on a hot fire.  Which makes it difficult to maintain a hot and uniform fire.  They load fuel on a long, sloping grate that enters the furnace.  Mechanical agitators shake the trash down this grate slowly.  As the trash approaches the fire it heats up and dries out as much as possible before entering the fire.  Still the fire burns unevenly.  They try to keep the temperature above 1,000 degrees Fahrenheit (about 538 degrees Celsius) .  But they’re not always successful.

They can improve the quality of the fuel by processing it first.  Tearing open bags with machinery so people can hand pick through the trash.  They will remove things that won’t burn.  Then send what will burn to a shredder.  Chopping it up into smaller pieces.  This can help make for a more uniform burn.  But it adds a lot of cost.  So these plants tend to be expensive.  And nowhere as efficient as a coal-fired power plant (or nuclear power plant) in boiling water into superheated dry steam.  Also, raw trash tends to stink.  And no one really knows what’s in it when it burns.  Making people nervous about what comes out of their smoke stacks.  You add all of these things up and you see why less than half of 1% of our electricity comes from burning our trash.

This is why we generate approximately 87% of our electricity from coal, natural gas and nuclear power.  Coal and nuclear power can make some of the hottest and driest steam.  But making a hot fire or bringing a nuclear reactor on line takes time.  A lot of time.  So we use these as baseload power plants.  They generate the supply that meets the minimum demand.  Power that we use at all times.  Day or night.  Winter or summer.  They run 24/7 all year long.  Natural gas plants add to the baseload.  And handle peak demands over the baseload.  Because they don’t boil water they can come on line very quickly to pickup spikes in electrical demand.  Hydroelectric power shares this attribute, too.  As long as there is enough water in the reservoir to bring another generator on line.  The other 5% (wind, solar, geothermal, trash incinerators, etc.) is more of a novelty than serious power generation.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Electricity, Heat Engine, Superheated Dry Steam, Coal-Fired Power Plant, Geothermal Power Plant and Waste-to-Energy Plant

Posted by PITHOCRATES - August 1st, 2012

Technology 101

Geothermal Power Plants and Waste-to-Energy Plants each produce less than Half of 1% of our Electricity

We produce the majority of our electricity with heat engines.  Where we boil water into steam to spin a turbine.  Or use the expanding gases of combustion to spin a turbine.  The primary heat engines we use are coal-fired power plants, natural gas-power plants and nuclear power plants.  The next big source of electricity generation is hydroelectric.  A renewable energy source.  In 2011 it produced less than 8% of our electricity.  These sources combined produce in excess of 95% of all electricity.  While renewable energy sources (other than hydroelectric) make up a very small percentage of the total.  Wind power comes in under 3%.  And solar comes in at less than 0.2% of the total.  So we are a very long way from abandoning coal, natural gas and nuclear power.

Two other renewable energy sources appear to hold promise.  Two heat engines.  One powered by geothermal energy in the earth.  The other by burning our garbage.  In a waste-to-energy plant.  These appear attractive.  Geothermal power appears to be as clean as it gets.  For this heat isn’t man-made.  It’s planet-made.  And it’s just there for the taking.  But the taking of it gets a little complicated.  As is burning our trash.  Not to mention the fact that few people want trash incinerators in their neighborhoods.  For these reasons they each provide a very small percentage of the total electric power we produce.  Both coming in at less than half of 1%.

So why steam?  Why is it that we make so much of our electrical power by boiling water?  Because of the different states of matter.  Matter can be a solid, liquid or a gas.  And generally passes from one state to another in that order.  Although there are exceptions.  Such as dry ice that skips the liquid phase.  It sublimates from a solid directly into a gas.  And goes from a gas to a solid by deposition.  Water, though, follows the general rule.  Ice melts into water at 32 degrees Fahrenheit (or 0 degrees Celsius).  Or water freezes into ice at the same temperature.  Water vaporizes into steam at 212 degrees Fahrenheit (or 100 degrees Celsius).  Or steam condenses into water at the same temperature.  These changes in the state of matter are easy to produce.  At temperatures that we can easily attain.  Water is readily available to vaporize into steam.  It’s safe and easy to handle.  Making it the liquid of choice in a heat engine.

Today’s Coal-Fired Power Plant pulverizes Coal into a Dust and Blows it into the Firebox

A given amount of water will increase about 1600 times in volume when converted to steam.  It’s this expansion that we put to work.  It’s what pushed pistons in steam engines.  It’s what drove steam locomotives.  And it’s what spins the turbines in our power plants.  The plumes of steam you see is not steam, though.  What you see is water droplets in the steam.  Steam itself is an invisible gas.  And the hotter and drier (no water) it is the better.  For water droplets in steam will pit and wear the blades on a steam turbine.  Which is why the firebox of a coal-fired plant reaches temperatures up to 3,000 degrees Fahrenheit (about 1,650 degrees Celsius).  To superheat the steam.  And to use this heat elsewhere in the power plant such as preheating water entering the boiler.  So it takes less energy to vaporize it.

To get a fire that hot isn’t easy.  And you don’t get it by shoveling coal into the fire box.  Today’s coal-fired power plant pulverizes coal into a dust and blows it into the firebox.  Because small particles can burn easier and more completely than large chunks of coal.  As one fan blows in fuel another blows in air.  To help the fire burn hot.  The better and finer the fuel the better it burns.  The better the fuel burns the hotter the fire.  And the drier the steam it makes.  Which can spin a turbine with a minimum of wear.

In a geothermal power plant we pipe steam out of the ground to spin a turbine.  If it’s hot enough.  Unfortunately, there aren’t a lot of geothermal wells that produce superheated dry steam.  Which limits how many of these plants we can build.  And the steam that the planet produces is not as clean as what man produces.  Steam out of the earth can contain a lot of contaminants.  Requiring additional equipment to process these contaminants out.  We can use cooler geothermal wells that produce wet steam but they require additional equipment to remove the water from the steam.  The earth may produce heat reliably but not water.  When we pipe this steam away the wells can run dry.  So these plants require condensers to condense the used steam back into water so we can pump it back to the well.  A typical plant may have several wells piped to a common plant.  Requiring a lot of piping both for steam and condensate.  You put all this together and a geothermal plant is an expensive plant.  And it is a plant that we can build in few places.  Which explains why geothermal power makes less than half of 1% of our electricity.

We generate approximately 87% of our Electricity from Coal, Natural Gas and Nuclear Power

So these are some the problems with geothermal.  Burning trash has even more problems.  The biggest problem is that trash is a terrible fuel.  We pulverize coal into a dust and blow into the firebox.  This allows a hot and uniform fire.  Trash on the other hand contains wet mattresses, wet bags of grass, car batteries, newspapers and everything else you’ve ever thrown away.  And if you ever lit a campfire or a BBQ you know some things burn better than other things.  And wet things just don’t burn at all.  So some of this fuel entering the furnace can act like throwing water on a hot fire.  Which makes it difficult to maintain a hot and uniform fire.  They load fuel on a long, sloping grate that enters the furnace.  Mechanical agitators shake the trash down this grate slowly.  As the trash approaches the fire it heats up and dries out as much as possible before entering the fire.  Still the fire burns unevenly.  They try to keep the temperature above 1,000 degrees Fahrenheit (about 538 degrees Celsius) .  But they’re not always successful.

They can improve the quality of the fuel by processing it first.  Tearing open bags with machinery so people can hand pick through the trash.  They will remove things that won’t burn.  Then send what will burn to a shredder.  Chopping it up into smaller pieces.  This can help make for a more uniform burn.  But it adds a lot of cost.  So these plants tend to be expensive.  And nowhere as efficient as a coal-fired power plant (or nuclear power plant) in boiling water into superheated dry steam.  Also, raw trash tends to stink.  And no one really knows what’s in it when it burns.  Making people nervous about what comes out of their smoke stacks.  You add all of these things up and you see why less than half of 1% of our electricity comes from burning our trash.

This is why we generate approximately 87% of our electricity from coal, natural gas and nuclear power.  Coal and nuclear power can make some of the hottest and driest steam.  But making a hot fire or bringing a nuclear reactor on line takes time.  A lot of time.  So we use these as baseload power plants.  They generate the supply that meets the minimum demand.  Power that we use at all times.  Day or night.  Winter or summer.  They run 24/7 all year long.  Natural gas plants add to the baseload.  And handle peak demands over the baseload.  Because they don’t boil water they can come on line very quickly to pickup spikes in electrical demand.  Hydroelectric power shares this attribute, too.  As long as there is enough water in the reservoir to bring another generator on line.  The other 5% (wind, solar, geothermal, trash incinerators, etc.) is more of a novelty than serious power generation.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Neutrons, Electrons, Electric Current, Nuclear Power, Nuclear Chain Reaction, Residual Decay Heat and Pressurized Water Reactor

Posted by PITHOCRATES - July 18th, 2012

Technology 101

We create about Half of our Electric Power by Burning Coal to Boil Water into Steam

An atom consists of a nucleus made up of protons and neutrons.  And electrons orbiting around the nucleus.  Protons have a positive charge.  Electrons have a negative charge.  Neutrons have a neutral charge.  In chemistry and electricity the electrons are key.  When different atoms come together they form chemical bonds.  By sharing some of those electrons orbiting their nuclei.  In metals free electrons roam around the metal lattice of the crystalline solid they’re in.  If we apply a voltage across this metal these free electrons begin to flow.  Creating an electric current.  The greater the voltage the greater the current.  And the greater the work it can do.  It can power a television set.  Keep your food from spoiling in a refrigerator.  Even make your summers comfortable by running your air conditioner. 

We use electric power to do work for us.  Power is the product of voltage and current.  The higher each is the more work this power can do for us.  In a direct current (DC) system the free electrons have to make a complete path from the power source (an electric generator) through the wiring to the work load and back again to the power source.  But generating the power at the voltage of the workload required high currents.  Thick wires.  And a lot of power plants because you could only make wires so thick before they were too heavy to work with.  Alternating current (AC) solved this problem.  By using transformers at each end of the distribution path to step up and then step down the voltage.  Allowing us to transmit lower currents at higher voltages which required thinner wires.  And AC didn’t need to return to the power plant.  It was more like a steam locomotive that converted the back and forth motion of the steam engine into rotational power.  AC power plants generated a back and forth current in the wires.  And electrical loads are able to take this back and forth motion and convert it into useful electrical power.

Even though AC power allows us to transmit lower currents we still need to move a lot of these free electrons.  And we do this with massive electric generators.  Where another power source spins these generators.  This generator spins an electric field through another set of windings to induce an electrical current.  Sort of how transformers work.  This electrical current goes out to the switchyard.  And on to our homes.  Simple, really.  The difficult part is creating that rotational motion to spin the generator.  We create about half of our electric power by burning coal to boil water into steam.  This steam expands against the vanes of a steam turbine causing it to spin.  But that’s not the only heat engine we use to make steam.

To Shut Down a Nuclear Reactor takes the Full Insertion of the Control Rods and Continuously Pumping Cooling Water through the Core

We use another part of the atom to generate heat.  Which boils water into steam.  That we use to spin a steam turbine.  The neutron.  Nuclear power plants use uranium for fuel.  It is the heaviest naturally occurring element.  The density of its nucleus determines an element’s weight.  The more protons and neutrons in it the heavier it is.  Without getting into too much physics we basically get heat when we bombard these heavy nuclei with neutrons.  When a nucleus splits apart it throws off a few spare neutrons which can split other nuclei.  And so on.  Creating a nuclear chain reaction.  It’s the actual splitting of these nuclei that generates heat.  And from there it’s just boiling water into steam to spin a steam turbine coupled to a generator.

Continuous atom splitting creates a lot of heat.  So much heat that it can melt down the core.  Which would be a bad thing.  So we move an array of neutron absorbers into and out of the core to control this chain reaction.  So in the core of a nuclear reactor we have uranium fuel pellets loaded into vertical fuel rods.  There are spaces in between these fuel rods for control rods (made out of carbon or boron) to move in and out of the core.  When we fully insert the control rods they will shut down the nuclear chain reaction by absorbing those free neutrons.  However there is a lot of residual heat (i.e., decay heat) that can cause the core to melt if we don’t remove it with continuous cooling water pumped through the core. 

So to shut down a nuclear reactor it takes both the full insertion of the control rods.  And continuously pumping cooling water through the core for days after shutting down the reactor.  Even spent fuel rods have to spend a decade or two in a spent fuel pool.  To dissipate this residual decay heat.  (This residual decay heat caused the trouble at Fukushima in Japan after their earthquake/tsunami.  The reactor survived the earthquake.  But the tsunami submerged the electrical gear that powered the cooling pumps.  Preventing them from cooling the core to remove this residual decay heat.  Leading to the partial core meltdowns.)

Nuclear Power is one of the most Reliable and Cleanest Sources of Power that leaves no Carbon Footprint

There is more than one nuclear reactor design.  But more than half in the U.S. are the Pressurized Water Reactor (PWR) type.  It’s also the kind they had at Three Mile Island.  Which saw America’s worst nuclear accident.  The PWR is the classic nuclear power plant that all people fear.  The tall hyperboloid cooling towers.  And the short cylindrical containment buildings with a dome on top housing the reactor.  The reactor itself is inside a humongous steel pressure vessel.  For pressure is key in a PWR.  The cooling water of the reactor is under very high pressure.  Keeping the water from boiling even though it reaches temperatures as high as 600 degrees Fahrenheit (water boils into steam at 212 degrees Fahrenheit under normal atmospheric pressure).  This is the primary loop.

The superheated water in the primary loop then flows through a heat exchanger.  Where it heats water in another loop of pumped water.  The secondary loop.  The hot water in the primary loop boils the water in the secondary loop into steam.  As it boils the water in the secondary loop it loses some of its own heat.  So it can return to the reactor core to remove more of its heat.  To prevent it from overheating.  The steam in the secondary loop drives the steam turbine.  The steam then flows from the turbine to a condenser and changes back into water.  The cooling water for the condenser is what goes to the cooling tower.  Making those scary looking cooling towers the least dangerous part of the power plant.

The PWR is one of the safest nuclear reactors.  The primary cooling loop is the only loop exposed to radiation.  The problem at Three Mile Island resulted from a stuck pressure relief valve.  That opened to vent high pressure during an event that caused the control rods to drop in and shut down the nuclear chain reaction.  So while they stopped the chain reaction the residual decay heat continued to cook the core.  But there was no feedback from the valve to the control room showing that it was still open after everyone thought it was closed.  So as cooling water entered the core it just boiled away.  Uncovering the core.  And causing part of it to melt.  Other problems with valves and gages did not identify this problem.  As some of the fuel melted it reacted with the steam producing hydrogen gas.  Fearing an explosion they vented some of this radioactive gas into the atmosphere.  But not much.  But it was enough to effectively shut down the U.S. nuclear power industry. 

A pity, really.  For if we had pursued nuclear power these past decades we may have found ways to make it safer.  Neither wind power nor solar power is a practical substitution for fossil-fuel generated electricity.  Yet we pour billions into these industries in hopes that we can advance them to a point when they can be more than a novelty.  But we have turned away from one of the most reliable and cleanest sources of power (when things work properly).  Using neutrons to move electrons.  Taking complete control of the atom to our make our lives better.  And to keep our environment clean.  And cool.  For there is no carbon footprint with nuclear power.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Windmills, Waterwheels, Steam Engine, Electric Power, Coal, Heat Engine, Steam Turbine, Generator and Coal-Fired Power Plant

Posted by PITHOCRATES - July 11th, 2012

Technology 101

By burning Coal to Boil Water into Steam to Move a Piston we could Build a Factory Anywhere

We created advanced civilization by harnessing energy.  And converting this energy into working power.  Our first efforts were biological.  Feeding and caring for large animals made these animals strong.  Their physiology converted food and water into strong muscles and bones.  Allowing them to pull heavy loads.  From plowing.  To heavy transportation.  To use in construction.  Of course the problem with animals is that they’re living things.  They eat and drink.  And poop and pee.  Causing a lot of pollution in and around people.  Inviting disease.

As civilization advanced we needed more energy.  And we found it in wind and water.  We built windmills and waterwheels.  To capture the energy in moving wind and moving water.  And converted this into rotational motion.  Giving us a cleaner power source than working animals.  Power that didn’t have to rest or eat.  And could run indefinitely as long as the wind blew and the water flowed.  Using belts, pulleys, cogs and gears we transferred this rotational power to a variety of work stations.  Of course the problem with wind and water is that you needed to be near wind and water.  Wind was more widely available but less reliable.  Water was more reliable but less widely available.  Each had their limitations.

The steam engine changed everything.  By burning a fuel (typically coal) to boil water into steam to move a piston we could build a factory anywhere.  Away from rivers.  And even in areas that had little wind.  The reciprocating motion of the piston turned a wheel to convert it into rotational motion.  Using belts, pulleys, cogs and gears we transferred this rotational power to a variety of work stations.  This carried us through the Industrial Revolution.  Then we came up with something better.  The electric motor.  Instead of transferring rotational motion to a workstation we put an electric motor at the work station.  And powered it with electricity.  Using electric power to produce rotational motion at the workstation.  Electricity and the electric motor changed the world just as the steam engine had changed the world earlier.  Today the two have come together.

You can tell a Power Plant uses a Scrubber by the White Steam puffing out of a Smokestack

Coal has a lot of energy in it.  When we burn it this energy is transformed into heat.  Hot heat.  For coal burns hot.  The modern coal-fired power plant is a heat engine.  It uses the heat from burning coal to boil water into steam.  And as steam expands it creates great pressure.  We can use this pressure to push a piston.  Or turn a steam turbine.  A rotational device with fins.  As the steam pushes on these fins the turbine turns.  Converting the high pressure of the steam into rotational motion.  We then couple this rotational motion of the steam turbine to a generator.  Which spins the generator to produce electricity.

Coal-fired power plants are hungry plants.  A large plant burns about 1,000 tons of coal an hour.  Or about 30,000 pounds a minute.  That’s a lot of coal.  We typically deliver coal to these plants in bulk.  Via Great Lakes freighters.  River barges.  Or unit trains.  Trains made up of nothing but coal hopper cars.  These feed coal to the power plants.  They unload and conveyor systems take this coal and create big piles.  You can see conveyors rising up from these piles of coal.  These conveyors transport this coal to silos or bunkers.  Further conveyor systems transfer the coal from these silos to the plant.  Where it is smashed and pulverized into a dust.  And then it’s blown into the firebox, mixed with hot air and ignited.  Creating enormous amounts of heat to boil an enormous amount of water.  Creating the steam to turn a turbine.

Of course, with combustion there are products left over.  Sulfur impurities in the coal create sulfur dioxide.  And as the coal burns it leaves behind ash.  A heavy ash that falls to the bottom of the firebox.  Bottom ash.  And a lighter ash that is swept away with the flue gases.  Fly ash.  Filters catch the fly ash.  And scrubbers use chemistry to remove the sulfur dioxide from the flue gases.  By using a lime slurry.  The flue gases rise through a falling mist of lime slurry.  They chemically react and create calcium sulfate.  Or Gypsum.  The same stuff we use to make drywall out of.  You can tell a power plant uses a scrubby by the white steam puffing out of a smokestack.  If you see great plumes puffing out of a smokestack there’s little pollution entering the atmosphere.  A smokestack that isn’t puffing out a plume of white steam is probably spewing pollution into the atmosphere.

Coal is a Highly Concentrated Source of Energy making Coal King when it comes to Electricity

When the steam exits the turbines it enters a condenser.  Which cools it and lowers its temperature and pressure.  Turning the steam back into water.  It’s treated then sent back to the boiler.  However, getting the water back into the boiler is easier said than done.  The coal heats the water into a high pressure steam.  So high that it’s hard for anything to enter the boiler.  So this requires a very powerful pump to overcome that pressure.  In fact, this pump is the biggest pump in the plant.  Powered by electric power.  Or steam.  Sucking some 2-3 percent of the power the plant generates.

Coupled to the steam turbine is a power plant’s purpose.  Generators.  Everything in a power plant serves but one purpose.  To spin these generators.  And when they spin they generate a lot of power.  Producing some 40,000 amps at 10,000 to 30,000 volts at a typical large plant.  Multiplying current by power and you get some 1,200 MW of power.  Which can feed a lot of homes with 100 amp, 240 volt services.  Some 50,000 with every last amp used in their service.  Or more than twice this number under typical loads.  Add a few boilers (and turbine and generator sets) and one plant can power every house and business across large geographic areas in a state.  Something no solar array or wind farm can do.  Which is why about half of all electricity produced in the U.S. is generated by coal-fired power plants.

Coal is a highly concentrated source of energy.  A little of it goes a long way.  And a lot of it produces enormous amounts of electric power.  Making coal king when it comes to electricity.  There is nothing that can match the economics and the logistics of using coal.  Thanks to fracking, though, natural gas is coming down in price.  It can burn cleaner.  And perhaps its greatest advantage over coal is that we can bring a gas-fired plant on line in a fraction amount of the time it takes to bring a coal-fired plant on line.  For coal-fired plants are heat engines that boil water into steam to spin turbines.  Whereas gas-fired plants use the products of combustion to spin their turbines.  Utilities typically use a combination of coal-fired and gas-fired plants.  The coal-fired plants run all of the time and provide the base load.  When demand peaks (when everyone turns on their air conditioners in the evening) the gas-fired plants are brought on line to meet this peak demand.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , ,

Trade, Steam Power, Reciprocating Steam Engine, Railroading, Janney Coupler and Westinghouse Air Brake

Posted by PITHOCRATES - January 25th, 2012

Technology 101

Early Cities emerged on Rivers and Coastal Water Regions because that’s where the Trade Was

The key to wealth and a higher standard of living has been and remains trade.  The division of labor has created a complex and rich economy.  So that today we can have many things in our lives.  Things that we don’t understand how they work.  And could never make ourselves.  But because of a job skill we can trade our talent for a paycheck.  And then trade that money for all those wonderful things in our economy.

Getting to market to trade for those things, though, hasn’t always been easy.  Traders helped here.  By first using animals to carry large amounts of goods.  Such as on the Silk Road from China.  And as the Romans moved on their extensive road network.  But you could carry more goods by water.  Rivers and coastal waterways providing routes for heavy transport carriers.  Using oar and sail power.  With advancements in navigation larger ships traveled the oceans.  Packing large holds full of goods.  Making these shippers very wealthy.  Because they could transport much more than any land-based transportation system.  Not to mention the fact that they could ‘bridge’ the oceans to the New World.

This is why early cities emerged on rivers and coastal water regions.  Because that’s where the trade was.  The Italian city-states and their ports dominated Mediterranean trade until the maritime superpowers of Portugal, Spain, The Netherlands, Great Britain and France put them out of business.  Their competition for trade and colonies brought European technology to the New World.  Including a new technology that allowed civilization to move inland.  The steam engine.

Railroading transformed the Industrial Economy

Boiling water creates steam.  When this steam is contained it can do work.  Because water boiling into steam expands.  Producing pressure.  Which can push a piston.  When steam condenses back into water it contracts.  Producing a vacuum.   Which can pull a piston.  As the first useable steam engine did.  The Newcomen engine.  First used in 1712.  Which filled a cylinder with steam.  Then injected cold water in the cylinder to condense the steam back into water.  Creating a vacuum that pulled a piston down.  Miners used this engine to pump water out of their mines.  But it wasn’t very efficient.  Because the cooled cylinder that had just condensed the steam after the power stroke cooled the steam entering the cylinder for the next power stroke.

James Watt improved on this design in 1775.  By condensing the steam back into water in a condenser.  Not in the steam cylinder.  Greatly improving the efficiency of the engine.  And he made other improvements.  Including a design where a piston could move in both directions.  Under pressure.  Leading to a reciprocating engine.  And one that could be attached to a wheel.  Launching the Industrial Revolution.  By being able to put a factory pretty much anywhere.  Retiring the waterwheel and the windmill from the industrial economy.

The Industrial Revolution exploded economic activity.  Making goods at such a rate that the cost per unit plummeted.  Requiring new means of transportation to feed these industries.  And to ship the massive amount of goods they produced to market.  At first the U.S. built some canals to interconnect rivers.  But the steam engine allowed a new type of transportation.  Railroading.  Which transformed the industrial economy.  Where we shipped more and more goods by rail.  On longer and longer trains.  Which made railroading a more and more dangerous occupation.  Especially for those who coupled those trains together.  And for those who stopped them.  Two of the most dangerous jobs in the railroad industry.  And two jobs that fell to the same person.  The brakeman.

The Janney Coupler and the Westinghouse Air Brake made Railroading Safer and more Profitable

The earliest trains had an engine and a car or two.  So there wasn’t much coupling or decoupling.  And speed and weight were such that the engineer could stop the train from the engine.  But that all changed as we coupled more cars together.  In the U.S., we first connected cars together with the link-and-pin coupler.  Where something like an eyebolt slipped into a hollow tube with a hole in it.  As the engineer backed the train up a man stood between the cars being coupled and dropped a pin in the hole in the hollow tube through the eyebolt.  Dangerous work.  As cars smashed into each other a lot of brakemen still had body parts in between.  Losing fingers.  Hands.  Some even lost their life.

Perhaps even more dangerous was stopping a train.  As trains grew longer the locomotive couldn’t stop the train alone.  Brakemen had to apply the brakes evenly on every car in the train.  By moving from car to car.  On the top of a moving train.  Jumping the gap between cars.  With nothing to hold on to but the wheel they turned to apply the brakes.  A lot of men fell to their deaths.  And if one did you couldn’t grieve long.  For someone else had to stop that train.  Before it became a runaway and derailed.  Potentially killing everyone on that train.

As engines became more powerful trains grew even longer.  Resulting in more injuries and deaths.  Two inventions changed that.  The Janney coupler invented in 1873.  And the Westinghouse Air Brake invented in 1872.  Both made mandatory in 1893 by the Railroad Safety Appliance Act.  The Janney coupler is what you see on U.S. trains today.  It’s an automatic coupler that doesn’t require anyone to stand in between two cars they’re coupling together.  You just backed one car into another.  Upon impact, the couplers latch together.  They are released by a lifting a handle accessible from the side of the train.

The Westinghouse Air Brake consisted of an air line running the length of the train.  Metal tubes under cars.  And those thick hoses between cars.  The train line.  A steam-powered air compressor kept this line under pressure.  Which, in turn, maintained pressure in air tanks on each car.  To apply the brakes from the locomotive cab the engineer released pressure from this line.  The lower pressure in the train line opened a valve in the rail car air tanks, allowing air to fill a brake piston cylinder.  The piston moved linkages that engaged the brake shoes on the wheels.  With braking done by lowering air pressure it’s a failsafe system.  For example, if a coupler fails and some cars separate this will break the train line.  The train line will lose all pressure.  And the brakes will automatically engage, powered by the air tanks on each car.

Railroads without Anything to Transport Produce no Revenue

Because of the reciprocating steam engine, the Janney coupler and the Westinghouse Air Brake trains were able to get longer and faster.  Carrying great loads great distances in a shorter time.  This was the era of railroading where fortunes were made.  However, those fortunes came at a staggering cost.  For laying track cost a fortune.  Surveying, land, right-of-ways, grading, road ballast, ties, rail, bridges and tunnels weren’t cheap.  They required immense financing.  But if the line turned out to be profitable with a lot of shippers on that line to keep those rails polished, the investment paid off.  And fortunes were made.  But if the shippers didn’t appear and those rails got rusty because little revenue traveled them, fortunes were lost.  With losses so great they caused banks to fail.

The Panic of 1893 was caused in part by such speculation in railroads.  They borrowed great funds to build railroad lines that could never pay for themselves.  Without the revenue there was no way to repay these loans.  And fortunes were lost.  The fallout reverberated through the U.S. banking system.  Throwing the nation into the worst depression until the Great Depression.  Thanks to great technology.  That some thought was an automatic ticket to great wealth.  Only to learn later that even great technology cannot change the laws of economics.  Specifically, railroads without anything to transport produce no revenue.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 21st, 2011

Technology 101

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,