Steam Locomotive, Diesel Electric Locomotive, Interstate Highway System, Airplane, Air Travel, Refined Petroleum Products and Pipelines

Posted by PITHOCRATES - March 21st, 2012

Technology 101

The Diesel Electric Locomotive could pull a Train Cross Country and into the Heart of a City with Minimal Pollution

The 1920s were transformative years.  The Roaring Twenties.  It’s when we moved from animal power to mechanical power.  From the horse and plow to the tractor.  From steam power to electric power.  From the telegraph to the telephone.  From the gas lamp to the electric light.  From crowded mass transit to the freedom of the automobile.  From manual labor to the assembly line. 

You can see a glimpse of that world in 1920’s Steam Train Journey Across the United States – Westward Ho!  The beginning of the modern city.  With modern street lighting.  Electric power and telephone overhead wiring.  Streets crowded with automobiles.  Tractors and mechanical harvesters on the farm.  And, of course, the steam locomotive.  Connecting distant cities.  Transferring the freight to feed the modern industrial economy.  And shipping the finished goods.  As well as all that food from the farm to our grocer’s shelves.  Proving the 1920s were vibrant economic times.  With real economic growth.  And not a speculative bubble.  For there was nothing speculative about all of this technology becoming a part of our way of life.

Of course the technology wasn’t perfect.  The coal-burning locomotives belched black smoke and ash wherever they went.  Which wasn’t all that bad in the open country where a train or two passed.  But it was pretty dangerous in tunnels.  Which had to be short lest they suffocated their passengers.  (One of the reasons why all subways use electric trains).  Making for some long and winding railroads in mountainous terrain.  To go around mountains instead of under them.  Slowing trains and increasing travel time.  And they were pretty unpleasant in the cities.  Where the several rail lines converged.  Bringing a lot of coal-burning locomotives together.  Creating a smoky haze in these cities.  And leaving a layer of ash everywhere.  The cleaner diesel-burning locomotives changed that.  The diesel electric locomotive could pull a train cross country and into the heart of a city with a minimal amount of pollution.  As long as they kept their engines from burning rich.  Which they would if they operated them with dirty air filters.  Reducing fuel efficiency by having the air-fuel mixture contain too much fuel.  And causing these engines to belch black smoke.  Similar to diesel trucks running with dirty air filters.

Airplanes can travel between Two Points in a Direct Line at Faster Speeds than a Train or Bus with Minimal Infrastructure

Trains shrunk our country.  Brought distant cities together.  Allowing people to visit anywhere in the continental United States.  And the railroads profited well from all of this travel.  Until two later developments.  One was the interstate highway system.  That transferred a lot of freight from the trains to trucks.  As well as people from trains to buses and cars.  And then air travel.  That transferred even more people from trains to airplanes.  This competition really weakening railroads’ profits.  And pretty much put an end to passenger rail.  For people used the interstate highway system for short trips.  And flew on the long ones.  Which was quicker.  And less expensive.  Primarily because airplanes flew over terrain that was costly to avoid.

Highways and railroads have to negotiate terrain.  They have to wind around obstacles.  Go up and down mountainous regions.  Cross rivers and valleys on bridges.  Travel under hilly terrain through tunnels.  And everywhere they go they have to travel on something built by man.  All the way from point A to point B.  Now trucks, buses and cars have an advantage here.  We subsidize highway travel with fuel taxes.  Trucking companies, bus lines and car owners didn’t have to build the road and infrastructure connecting point A to point B.  Like the railroads do.  The railroads had to supply that very extensive and very expensive infrastructure themselves.  Paid for by their freight rates and their passenger ticket sales.  And when there were less expensive alternatives it was difficult to sell your rates and fares at prices high enough to support that infrastructure.  Especially when that lower-priced alternative got you where you were going faster.  Like the airplane did.

Man had always wanted to fly.  Like a bird.  But no amount of flapping of man-made wings got anyone off the ground.  We’re too heavy and lacked the necessary breast muscles to flap anything fast enough.  Not to mention that if we could we didn’t have any means to stabilize ourselves in flight.  We don’t have a streamline body or tail feathers.  But then we learned we could create lift.  Not by flapping but my pushing a curved wing through the air.  As the air passes over this curved surface it creates lift.  Generate enough speed and you could lift quite a load with those wings.  Including people.  Cargo.  Engines.  And fuel.  Add in some control elements and we could stabilize this in flight.  A tail fin to prevent yawing (twisting left and right) from the direction of flight.  Like a weathercock turns to point in the direction of the wind.  And an elevator (small ‘wing’ at the tail of the plane) to control pitch (nose up and nose down).  Ailerons correct for rolling.  Or turn the plane by rolling.  By tipping the wings up or down to bank the airplane (to turn left the left aileron goes up and the right aileron goes down).  And using the elevator on the take-off roll to pitch the nose up to allow the plane to gain altitude.  And in flight it allows the plane to ascend or descend to different altitudes.  Put all of this together and it allows an airplane to travel between points A and B while avoiding all terrain.  In a direct line between these two points.  At a much faster speed than a train, bus or car can travel.  And the only infrastructure required for this are the airports at points A and B.  And the few en route air traffic controllers between points A and B. Which consisted of radar installations and dark rooms with people staring at monitors.  Communicating to the aircraft.  Helping them to negotiate the air highways without colliding into other aircraft.  And air travel took off, of course, in the 1920s.  The Roaring Twenties.  Those glorious transformative years.

Refined Petroleum Products have Large Concentrations of Energy and are the Only Fuel that allows Air Travel

The most expensive cost of flying is the fuel cost.  The costlier it is the costlier it is to fly.  Not so for the railroads.  Because their fuel costs aren’t the most expensive cost they have.  Maintaining their infrastructure is.  They can carry incredible loads cross country for a small price per unit weight.  Without swings in fuel prices eating into their profits.  Making them ideal to transfer very large and/or heavy loads over great distances.  Despite dealing with all the headaches of terrain.  For neither a plane nor a truck can carry the same volume a train can.  And heavier loads on a plane take far greater amounts of fuel.  This additional fuel itself adding a great amount of weight to the aircraft.  Thus limiting its flight distance.  Requiring refueling stops along the way.  Making it a very expensive way to transport heavy loads.  Which is why we ship coal on trains.  Not on planes.

Trains are profitable again.  But they’re not making their money moving people around.  Their money is in heavy freight.  Iron ore.  Coke.  And, of course, coal.  To feed the modern industrial economy.  Stuff too heavy for our paved roads.  And needed in such bulk that it would take caravans of trucks to carry what one train can carry.  But even trains can’t transport something in enough bulk to make it cost efficient.  Refined petroleum.  Gasoline.  Diesel.  And jet fuel.  For these we use pipelines.  From pipelines we load gas and diesel onto trucks and deliver it to your local gas station.  We run pipelines directly to the fuel racks in rail yards.   And run pipelines to our airports.  Where we pump jet fuel into onsite storage tanks in large fuel farms.  Which we then pump out in another set of pipelines to fueling hydrants located right at aircraft gates.

These refined petroleum products carry large concentrations of energy.  Are easy to transport in pipelines.  Are portable.  And are very convenient.  Planes and trains (as well as ships, busses and cars) can carry them.  Allowing them to travel great distances.  Something currently no renewable energy can do.  And doing without them would put an end to air travel.  Greatly increase the cost of rail transport (by electrifying ALL our tracks).  Or simply abandoning track we don’t electrify.  Making those far distant cities ever more distant.  And our traveling options far more limited than they were in the 1920s.  Turning the hands of time back about a hundred years.  Only we’ll have less.  And life will be less enjoyable.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Flint Tools, Levers, Wheels, Animal Power, Water Power, Wind Power, Steam Power, Electrical Power, Nuclear Power and Solar Power

Posted by PITHOCRATES - February 22nd, 2012

Technology 101

Man harnessed the Energy in Moving Water with a Water Wheel

When prehistoric man first chipped a piece of flint to make a sharp edge he learned something.  It made work easier.  And his life better.  This tool concentrated his energy into that sharp edge.  Increasing the amount of energy he could put to work.  Allowing him to skin an animal quickly and efficiently like never before.  Making better hides to protect him from the elements.  Yes, he said, this tool is good.  But in a somewhat less sophisticated manner of speech.

From that moment forward it has been man’s singular desire to improve on this first tool.  To find ways to concentrate energy and put it to work.  Levers allowed him to move heavier things.  Wheels allowed him to move heavier loads.  The block and tackle allowed him to lift or pull heavier weights.  Harnessing animals allowed him to do all of these things even better.  And we would use animal power for millennia.  Even today they still provide the primary source of power for some less developed countries.

But animals have their limitations.  They’re big, they eat, drink, pee and poop.  Which doesn’t make them an ideal source of power to turn a mill wheel.  A big wheel that grinds grain into flour.  It’s heavy.  But it doesn’t have to spin fast.  Just for long periods of time.  Then man had another moment like he did when he chipped a piece of flint.  He noticed in his environment that things moved.  The wind.  And the water in a river.  The wind could blow fast or slow.  Or not at all.  But the water flow was steady.  And reliable.  So man harnessed the energy in the moving water with a water wheel.  And connected it to his mill wheel via some belts and pulleys.  And where there was no water available he harnessed the less reliable wind.

The Steam Engine eliminated the Major Drawbacks of Water Power and Wind Power 

The water flowed day and night.  You didn’t have to feed it or clean up after it.  And a strong current had a lot of concentrated energy.  Which could do a lot of work.  Far more than a sharpened piece of flint.  Which was ideal for our first factories.  The water wheel shaft became a main drive shaft that drove other machines via belts and pulleys.  The main drive shaft ran the length of the factory.  Workers could operate machinery underneath it by engaging it to the main drive shaft through a belt and pulley.  Take a trip to the past and visit a working apple mill powered by a water wheel.  It’s fascinating.  And you’ll be able to enjoy some fresh donuts and hot cider.  During the harvest, of course.

While we built factories along rivers we used that other less reliable source of energy to cross oceans.  Wind power.  It wasn’t very reliable.  And it wasn’t very concentrated.  But it was the only way you could cross an ocean.  Which made it the best way to cross an ocean.  Sailors used everything on a sailing ship from the deck up to catch the wind and put it to work.  Masts, rigging and sails.  Which were costly.  Required a large crew.  And took up a lot of space and added a lot of weight.  Space and weight that displaced revenue-earning cargo.

The steam engine eliminated the major drawbacks of water power and wind power.  By replacing the water wheel with a steam engine we could build factories anywhere.  Not just on rivers.  And the steam engine let ships cross the oceans whenever they wanted to.  Even when the wind didn’t blow.  And more space was available for revenue-earning cargo.  When these ships reached land we transferred their cargoes to trains.  Pulled by steam locomotives.  That could carry this revenue-earning cargo across continents.   This was a huge step forward.  Boiling water by burning coal to make steam.  A highly concentrated energy source.  A little of it went a long way.  And did more work for us than ever.  Far more than a water wheel.  It increased the amount of work we could do so much that it kicked off the Industrial Revolution.

With Nuclear Power our Quest to find more Concentrated Forms of Energy came to an End 

We replaced coal with oil in our ships and locomotives.  Because it was easier to transport.  Store.  And didn’t need people to shovel it into a boiler.  Oil burners were more efficient.  We even used it to generate a new source of power.  Electrical power.  We used it to boil water at electrical generating plants to spin turbines that turned electrical generators.  We could run pipelines to feed these plants.  Making the electricity they generated even more efficient.  And reliable.  Soon diesel engines replaced the oil burners in ships and trains.  Allowed trucks and buses to run where the trains didn’t.  And gasoline allowed people to go anywhere the trains and buses didn’t go.

The modern economy ran on petroleum.  And electricity.  We even returned to the water wheel to generate electricity.  By building dams to build huge reservoirs of water at elevations.  Creating huge headwater forces.  Concentrating more energy in water.  Which we funneled down to the lower elevation.  Making it flow through high-speed water turbines connected to electrical generators.  That spun far faster than their water wheel ancestors.  Producing huge amounts of reliable electrical power.  We even came up with a more reliable means to create electrical power.  With an even more concentrated fuel.  Fissile material gave us nuclear power.  During the oil shocks of the Seventies the Japanese made a policy change to expand their use of nuclear power.  To insulate them from future oil supply shocks.  Which it did.  While in America the movie The China Syndrome came out around the time of the incident at Three Mile Island.  And killed nuclear power in America.  (But as a consolation prize we disproved the idea of Keynesian stimulus.  When the government created massive inflation with Keynesian policy.  Printing money.  Which raised prices without providing any new economic activity.  Causing instead high inflation and high unemployment.  What we call stagflation.  The Japanese got a big Keynesian lesson about a decade later.  When their massive asset bubble began to deflate giving them their Lost Decade.)

And with nuclear power that quest to find more ways to make better and more efficient use of concentrated energy from that first day we used a flint tool came to an end.  Global warming alarmists are killing sensible sources of energy that have given us the modern world.  Even animal rights activists are fighting against one of the cleanest sources of power we’ve ever used.  Water power.  Because damming rivers harms ecosystems in the rivers we dam.  Instead political pressures have turned the hands of time backwards by using less concentrated and less efficient sources of energy.  Wind power.  And solar power.  Requiring far greater infrastructure installations to capture far less amounts of energy from these sources.  Power plants using wind power and solar power will require acres of land for windmills and solar panels.  And it will take many of these power plants to produce what a single power plant using coal, oil, natural gas or fissile material can generate.  Making power more costly than it ever has been.  Despite wind and sunshine being free.  And when the great civilizations become bankrupt chasing bankrupt energy policies we will return to a simpler world.  A world where we don’t make and use power.  Or machinery.  Much like our flint-tool using ancestors.  Albeit with a more sophisticated way of expressing ourselves.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Trade, Steam Power, Reciprocating Steam Engine, Railroading, Janney Coupler and Westinghouse Air Brake

Posted by PITHOCRATES - January 25th, 2012

Technology 101

Early Cities emerged on Rivers and Coastal Water Regions because that’s where the Trade Was

The key to wealth and a higher standard of living has been and remains trade.  The division of labor has created a complex and rich economy.  So that today we can have many things in our lives.  Things that we don’t understand how they work.  And could never make ourselves.  But because of a job skill we can trade our talent for a paycheck.  And then trade that money for all those wonderful things in our economy.

Getting to market to trade for those things, though, hasn’t always been easy.  Traders helped here.  By first using animals to carry large amounts of goods.  Such as on the Silk Road from China.  And as the Romans moved on their extensive road network.  But you could carry more goods by water.  Rivers and coastal waterways providing routes for heavy transport carriers.  Using oar and sail power.  With advancements in navigation larger ships traveled the oceans.  Packing large holds full of goods.  Making these shippers very wealthy.  Because they could transport much more than any land-based transportation system.  Not to mention the fact that they could ‘bridge’ the oceans to the New World.

This is why early cities emerged on rivers and coastal water regions.  Because that’s where the trade was.  The Italian city-states and their ports dominated Mediterranean trade until the maritime superpowers of Portugal, Spain, The Netherlands, Great Britain and France put them out of business.  Their competition for trade and colonies brought European technology to the New World.  Including a new technology that allowed civilization to move inland.  The steam engine.

Railroading transformed the Industrial Economy

Boiling water creates steam.  When this steam is contained it can do work.  Because water boiling into steam expands.  Producing pressure.  Which can push a piston.  When steam condenses back into water it contracts.  Producing a vacuum.   Which can pull a piston.  As the first useable steam engine did.  The Newcomen engine.  First used in 1712.  Which filled a cylinder with steam.  Then injected cold water in the cylinder to condense the steam back into water.  Creating a vacuum that pulled a piston down.  Miners used this engine to pump water out of their mines.  But it wasn’t very efficient.  Because the cooled cylinder that had just condensed the steam after the power stroke cooled the steam entering the cylinder for the next power stroke.

James Watt improved on this design in 1775.  By condensing the steam back into water in a condenser.  Not in the steam cylinder.  Greatly improving the efficiency of the engine.  And he made other improvements.  Including a design where a piston could move in both directions.  Under pressure.  Leading to a reciprocating engine.  And one that could be attached to a wheel.  Launching the Industrial Revolution.  By being able to put a factory pretty much anywhere.  Retiring the waterwheel and the windmill from the industrial economy.

The Industrial Revolution exploded economic activity.  Making goods at such a rate that the cost per unit plummeted.  Requiring new means of transportation to feed these industries.  And to ship the massive amount of goods they produced to market.  At first the U.S. built some canals to interconnect rivers.  But the steam engine allowed a new type of transportation.  Railroading.  Which transformed the industrial economy.  Where we shipped more and more goods by rail.  On longer and longer trains.  Which made railroading a more and more dangerous occupation.  Especially for those who coupled those trains together.  And for those who stopped them.  Two of the most dangerous jobs in the railroad industry.  And two jobs that fell to the same person.  The brakeman.

The Janney Coupler and the Westinghouse Air Brake made Railroading Safer and more Profitable

The earliest trains had an engine and a car or two.  So there wasn’t much coupling or decoupling.  And speed and weight were such that the engineer could stop the train from the engine.  But that all changed as we coupled more cars together.  In the U.S., we first connected cars together with the link-and-pin coupler.  Where something like an eyebolt slipped into a hollow tube with a hole in it.  As the engineer backed the train up a man stood between the cars being coupled and dropped a pin in the hole in the hollow tube through the eyebolt.  Dangerous work.  As cars smashed into each other a lot of brakemen still had body parts in between.  Losing fingers.  Hands.  Some even lost their life.

Perhaps even more dangerous was stopping a train.  As trains grew longer the locomotive couldn’t stop the train alone.  Brakemen had to apply the brakes evenly on every car in the train.  By moving from car to car.  On the top of a moving train.  Jumping the gap between cars.  With nothing to hold on to but the wheel they turned to apply the brakes.  A lot of men fell to their deaths.  And if one did you couldn’t grieve long.  For someone else had to stop that train.  Before it became a runaway and derailed.  Potentially killing everyone on that train.

As engines became more powerful trains grew even longer.  Resulting in more injuries and deaths.  Two inventions changed that.  The Janney coupler invented in 1873.  And the Westinghouse Air Brake invented in 1872.  Both made mandatory in 1893 by the Railroad Safety Appliance Act.  The Janney coupler is what you see on U.S. trains today.  It’s an automatic coupler that doesn’t require anyone to stand in between two cars they’re coupling together.  You just backed one car into another.  Upon impact, the couplers latch together.  They are released by a lifting a handle accessible from the side of the train.

The Westinghouse Air Brake consisted of an air line running the length of the train.  Metal tubes under cars.  And those thick hoses between cars.  The train line.  A steam-powered air compressor kept this line under pressure.  Which, in turn, maintained pressure in air tanks on each car.  To apply the brakes from the locomotive cab the engineer released pressure from this line.  The lower pressure in the train line opened a valve in the rail car air tanks, allowing air to fill a brake piston cylinder.  The piston moved linkages that engaged the brake shoes on the wheels.  With braking done by lowering air pressure it’s a failsafe system.  For example, if a coupler fails and some cars separate this will break the train line.  The train line will lose all pressure.  And the brakes will automatically engage, powered by the air tanks on each car.

Railroads without Anything to Transport Produce no Revenue

Because of the reciprocating steam engine, the Janney coupler and the Westinghouse Air Brake trains were able to get longer and faster.  Carrying great loads great distances in a shorter time.  This was the era of railroading where fortunes were made.  However, those fortunes came at a staggering cost.  For laying track cost a fortune.  Surveying, land, right-of-ways, grading, road ballast, ties, rail, bridges and tunnels weren’t cheap.  They required immense financing.  But if the line turned out to be profitable with a lot of shippers on that line to keep those rails polished, the investment paid off.  And fortunes were made.  But if the shippers didn’t appear and those rails got rusty because little revenue traveled them, fortunes were lost.  With losses so great they caused banks to fail.

The Panic of 1893 was caused in part by such speculation in railroads.  They borrowed great funds to build railroad lines that could never pay for themselves.  Without the revenue there was no way to repay these loans.  And fortunes were lost.  The fallout reverberated through the U.S. banking system.  Throwing the nation into the worst depression until the Great Depression.  Thanks to great technology.  That some thought was an automatic ticket to great wealth.  Only to learn later that even great technology cannot change the laws of economics.  Specifically, railroads without anything to transport produce no revenue.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,