# Engine Block Heaters and Battery Heaters

Posted by PITHOCRATES - February 19th, 2014

# Technology 101

## As Matter loses Heat it shrinks from a Gas to a Liquid to a Solid

There is no such thing as cold.  Cold is simply the absence of heat.  Which is a real thing.  Heat.  It’s a form of energy.  Warm things have a lot of energy.  Cold things have less energy.  The Kelvin scale is a measurement of temperature.  Like degrees used when measuring temperature in Celsius or Fahrenheit.  Where 32 degrees Fahrenheit equals 0 degrees Celsius.  And 0 degrees Celsius equals 273.15 kelvin.  Not ‘degrees’ kelvin.  Just kelvin.

When something cools it loses heat energy.  The molecular activity slows down.  Steam has a lot of molecular activity.  At 212 degrees Fahrenheit (100 degrees Celsius or 373.15 kelvin) the molecular activity decreases enough (i.e., loses energy) that steam changes to water.  At 32 degrees Fahrenheit (0 degrees Celsius or 273.15 kelvin) the molecular activity decreases enough (i.e., loses energy) that water turns into ice.

The more heat matter loses the less molecules move around.  At absolute zero (0 kelvin) there is no heat at all.  And no molecular movement.  Making 0 kelvin the ‘coldest’ anything can be.  For 0 kelvin represents the absence of all heat.  As matter loses heat it shrinks.  Gases become liquid.  And liquids becomes solid.  (Water, however, is an exception to that rule.  When water turns into ice it expands.  And cracks our roadways.)  They become less fluid.  Or more viscous.  Cold butter is harder to spread on a roll than warm butter.  Because warm butter has more heat energy than cold butter.  So warm butter is less viscous than cold butter.

## Vehicles in Sub-Freezing Temperatures can Start Easily if Equipped with an Engine Block Heater

In a car’s internal combustion engine an air-fuel mixture enters the cylinder.  As the piston comes up it compresses this mixture.  And raises its temperature.  When the piston reaches the top the air-fuel mixture is at its maximum pressure and temperature.  The spark plug then provides an ignition source to cause combustion.  (A diesel engine operates at such a high compression that the temperature rise is so great the air-fuel mixture will combust without an ignition source).  Driving the piston down and creating rotational energy via the crank shaft.

For this to happen a lot of things have to work together.  You need energy to spin the engine before the combustion process.  You need lubrication to allow the engine components to move without causing wear and tear.  And you need the air-fuel mixture to reach a temperature to burn cleanly and to extract as much energy from combustion as possible.  None of which works well in very cold temperatures.

Vehicles operating in sub-freezing temperatures need a little help.  Manufacturers equip many vehicles sold for these regions with engine block heaters.  These are heating elements in the engine core.  You’ll know a vehicle has one when you see an electrical cord coming out of the engine compartment.  When these engines aren’t running they ‘plug in’ to an electrical outlet.  A timer will cycle these heaters on and off.  Keeping the engine block warmer than the subfreezing temperatures.

## The Internal Combustion Engine is Ideal for use in Cold Temperatures

At subfreezing temperatures engine oil because more viscous.  And more like tar.  This does not flow well through the engine.  So until it warms up the engine operates basically without any lubrication.  In ‘normal’ temperatures the oil heats up quickly and flows through the engine before there’s any damage.  At subfreezing temperatures oil needs a little help when starting.  So the oil sump is heated.  Like an engine block heater.  So when someone tries to start the engine the oil is more like oil and less like tar.

Of course, for any of this to help start an engine you have to be able to turn the engine over first.  And to do that you need a charged battery.  But even a charged battery needs help in sub-freezing temperatures.  For in these temperatures there is little molecular action in the battery.  And without molecular activity there will be little current available to power the engine’s starter.  So there are heaters for batteries, too.  Electric blankets or pads that sit under or wrap around a battery.  To warm the battery to let the chemicals inside move around more freely.  So they can produce the electric power it needs to turn an engine over on a cold day.

Once an engine block, the engine oil and battery are sufficiently warmed by external electric power the engine can start.  Once it warms up it can operate like it can at less frigid temperatures.  The engine alternator powers the electrical systems on the vehicle.  And recharges the battery.  The engine coolant heats up and provides heat for the passenger compartment.  And defrosts the windows.  Once the engine is warm it can shut down and start again an hour or so later with ease.  Making it ideal for use in cold temperatures.  Unlike an electric car.  For the colder it gets the less energy its batteries will have.  Making it a risky endeavor to drive to the store in the Midwest or the Northeast during a winter such as this.  Something people should think about before buying an all-electric car.

www.PITHOCRATES.com

# Melting Snow and Ice

Posted by PITHOCRATES - February 5th, 2014

# Technology 101

## When Temperatures fall below Freezing Liquid Water turns into Solid Water

You know what the best thing about water is?  You don’t have to shovel it.  Well, that, and its life-giving properties.  Let’s face it.  We couldn’t survive without the stuff.  We couldn’t grow food.  We even couldn’t live without drinking water.  So perhaps its life-giving properties is the best thing about water.  But a close second would be that thing about not having to shovel it.

When it rains water soaks into our green areas.  It runs off driveways and sidewalks into green areas.  And into streets.  Where it runs off into a storm drainage system.  Which takes it to a river or lake.  The rain lets our gardens grow.  And any excess water conveniently just goes away.  We may have a puddle or two to slosh through.  But even those go away without us having to do anything.  Water is nice that way.  As long as the temperature is above its freezing point.

When the temperature falls below the freezing point of water bad things start to happen.  Liquid water turns into solid water.  And hangs around for awhile.  Accumulating.  On our driveways, sidewalks, porches and roads.  It’s pretty much everywhere we don’t want it to be.  Making it difficult to walk.  And drive.  We slip and fall a lot in it.  The sun may melt it a little during the day.  Creating puddles of water where the snow once was. But when the sun sets those puddles freeze.  And become even more slippery.  Making solid water more dangerous than liquid water.  So a big part of making it through winters in northern climes, then, is transforming solid water back into the liquid form.

## Even though Bourbon melts Ice Cubes Bourbon would be a Poor Choice to melt Snow and Ice

All material can be in three different stages.  It can be a solid.  A liquid.  Or a gas.  What determines the phase of this material depends on a couple of things.  Mostly temperature and pressure.  And the chemical properties of the material.  At ambient temperature and pressure material typically exists stably in one phase.  Water, for example, is stable in the liquid phase on an 80-degree summer day.  Allowing us to swim in it.  While on a freezing February day it is stable in the solid phase.  Which is why we hold the Winter Olympics in February.  The cold temperatures give us the best solid water conditions.

If we raise the temperature of water we can turn it from a liquid to a gas.  We could also do this by lowering the ambient air pressure.  Such as putting it into a vacuum.  For a liquid remains a liquid as long as the vapor pressure (the tendency for particles to escape from the liquid they’re in) of the liquid is less than the ambient air pressure.  If we lower the ambient air pressure below the vapor pressure of the liquid we can lower the boiling point of that liquid.  This is why different liquids have different boiling points.  They have different vapor pressures.  Oxygen has a very high vapor pressure and requires a high pressure and cold temperature to keep oxygen in a liquid phase.

When we take ice cubes out of the freezer and add them to a glass of bourbon they melt.  Because the ambient temperature outside of the freezer is above the freezing point of water.  So the solid water changes its phase from solid to liquid.  It would follow, then, that pouring bourbon on snow and ice would help melt it.  Of course we don’t do that.  For wasting bourbon like that would be criminal.  Not to mention costly.  Even if you used the cheap stuff.  Making bourbon a poor choice for melting snow and ice.

## Salt dissolves into a Brine Solution that lowers the Melting Point of Snow and Ice

We see that a material will change its phase at different temperatures and pressures.  Which is good to know.  But it doesn’t help us to melt snow and ice during winter.  For we can’t lower the atmospheric air pressure to lower the boiling and melting points of water.  And we can’t raise the ambient temperature above the melting point of water.  If we could our winters would probably be a lot more comfortable than they are now.  So because when we can’t change the air pressure or temperature of the ambient environment the snow and ice is in we do something else.  We use chemistry to lower the melting point of snow and ice.  And the most common chemical we use is salt.

To melt snow and ice salt needs heat and moisture.  The moisture comes from the snow and ice.  Or from the humidity in the air.  The heat comes from the warmth of the earth or air.  Heated by the sun.  It also comes from the friction between tires and the road.  When salt comes into contract with water and heat it dissolves into a brine solution.  And this brine solution has a much lower melting point than water.  Which in turn lowers the melting point of the snow and ice it comes into contact with.  Allowing it to be in the liquid phase at temperatures below freezing temperatures.  Melting that snow and ice so it can run off like rain water.

The warmer it is when it snows the quicker salt will melt that snow.  While the colder it is the longer it takes to melt.  If it gets too cold (around 15 degrees Fahrenheit) salt proves to be ineffective.  In temperatures below 15 degrees Fahrenheit other chemicals work better.  Such as calcium chloride.  But calcium chloride is more costly than sodium chloride (salt).  Ambient temperatures, time of day, sunny or cloudy, wind, etc., all determine the chemical to use.  And the amount of chemical to use.  They consider all of these factors (and more) before sending those ‘salt’ trucks out on the roads.  Allowing us to drive in the worst of winters just as we drive in the best of summers.  It may take more time.  And there may be a little more cussing.  But we still go to work, take our kids to school, go shopping, etc., when it snows.  Thanks to chemicals.  Chemistry.  And the people that put those chemicals and that chemistry to work.

www.PITHOCRATES.com