Solar Power is so Inefficient that Scientists had to create a Perpetual Heat Machine to make it more Efficient

Posted by PITHOCRATES - April 15th, 2014

Week in Review

There’s a problem with solar power.  Night.  Clouds.  Rain.  Hail.  Snow.  Dust.  Bird poop.  Etc.  Actually that’s a little more than one problem.  There’s at least nine.  But the biggest problem is night.  Because it’s hard for solar panels to produce electricity from sunshine when the sun isn’t shining.  That is, until now (see Scientists Discover How to Generate Solar Power in the Dark by Todd Woody posted 4/15/2014 on The Atlantic).

The next big thing in solar energy could be microscopic.

Scientists at MIT and Harvard University have devised a way to store solar energy in molecules that can then be tapped to heat homes, water or used for cooking.

The best part: The molecules can store the heat forever and be endlessly re-used while emitting absolutely no greenhouse gases.  Scientists remain a way’s off in building this perpetual heat machine but they have succeeded in the laboratory at demonstrating the viability of the phenomenon called photoswitching…

So how would molecular solar storage work if the technology can be commercialized? Timothy Kucharski, the paper’s lead author and a postdoc at MIT and Harvard, told The Atlantic that most likely the storage would take a liquid form, which would be easy to transport.

“It would also enable charging by flowing the material from a storage tank through a window or clear tube exposed to the sun and then to another storage tank, where the material would remain until it’s needed,” Kucharski said in an email.  “That way one could stockpile the charged material for use when the sun’s not shining.”

Of course the takeaway from this is that solar power is so inefficient that Scientists at MIT and Harvard University had to make the impossible possible to make it more efficient.  And create a perpetual heat machine.  A self-sustaining machine.  Requiring no energy input to create energy.  If it works, great.  It would be paradigm changing.  But while we wait we should stop wasting money on solar panels.  Which can only produce energy when the sun shines.  About half of the day.  Unlike a coal-fired power plant.  Which produces power 24/7.  Regardless of night.  Clouds.  Rain.  Hail.  Snow.  Dust.  Or bird poop.


Tags: , , , , , ,

Power Outage stranding Electric Trains show the need for Coal and Oil

Posted by PITHOCRATES - September 29th, 2013

Week in Review

There are few more costly ways to move people than by train.  Running a passenger train is incredibly expensive.  With the biggest cost in maintaining all the infrastructure before point A and point B.  Track, signals, rights-of-way and people.  Lots and lots of people.  To build this infrastructure.  To maintain this infrastructure.  With electric trains requiring the most costly infrastructure of all.  Especially high-speed trains.  These costs are so great that they are greater than their fuel costs.  Unlike the airlines.  That provide a much more cost-efficient way to move people.

Trains are slower than planes.  And they make a lot of stops.  So they appeal to a small group of users.  So few travel by train that it is impossible to charge a ticket price that can pay for this infrastructure that people can afford.  Which is why governments have to subsidize all passenger rail except for maybe two lines.  One Bullet line in Japan.  And one high-speed line in France.  Governments pay for or subsidize pretty much every other passenger train line in the world.  Which they are only more willing to do because those ‘lots and lots of people’ are union workers.  Who support their friends in government.

So governments build passenger rail lines more for political reasons than economic.  For passenger rail is bad economics.  In a highly dense city, though, they may be the only option to move so many people.  But even then the ridership can’t pay for everything.  So it requires massive subsidies.  Worse, by relying on electrified trains so much these rail lines are subject to mass outages.  Unlike diesel electric trains.  Trains that don’t need such a costly infrastructure as electric trains do.  And with a full tank of diesel they can move people even during a large-scale power outage.  Like that currently happening with Con Edison (see Stranded NYC Commuters Ask Why Metro-North’s Power Failed by Mark Chediak & Priya Anand posted 9/27/2013 on Bloomberg).

Less than a year after Consolidated Edison Inc. (ED) left 900,000 customers in the dark during Hurricane Sandy, the utility faces the wrath of stranded commuters over a power failure that has crippled trains from New York to Boston.

Con Edison, based in New York, has warned it may take weeks to restore electricity to the Metro-North Railroad’s busiest line, which serves Connecticut and parts of suburban Westchester County. An electrical fault cut power on a feeder cable while an alternate was out of service for improvements…

The latest high-profile power failure for Con Edison follows Sandy, the worst storm in the company’s history, which brought flooding that left lower Manhattan without power for days. A few months before Sandy, New York Governor Andrew Cuomo, a Democrat, stepped in to resolve an employee lockout by the company that led to protests outside the Upper East Side home of Kevin Burke, the chairman and chief executive officer…

The rail operator is running buses and diesel-powered trains to accommodate no more than a third of the New Haven route’s regular ridership…

The power failure also affected Northeast Corridor passenger-rail service, as Amtrak canceled its Acela Express trains between New York and Boston through Sept. 29.

How about that.  Dirty, filthy, stinky diesel comes to the rescue.  Refined from petroleum oil.  As much as people hate it they can’t live without it.  No matter how hard they try.

This is what you can expect when you wage a war on reliable and inexpensive coal.  Pushing our power provides to become green only raises the cost of electric power generation.  Disconnecting coal-fired power plants from the grid removes more reliable power while replacing it with less reliable power.  And forcing power companies to invest in renewable power reduces their margins.  As they have to maintain their entire electric distribution system even if everyone has a solar power at home.  Because solar power won’t turn on your lights once the sun goes down.  And windmills won’t spin on a calm days.  So while power companies have to maintain their systems as if there is no solar or wind power they can’t bill for that capacity when the people get their power from renewable sources.  So they have little choice but to cut costs.  Leading to conflict with the unions.  And making an aging infrastructure go longer without maintenance.

You can’t have it both ways.  You can’t wage a war on coal and oil without getting costlier and less reliable power.  If you want lower-cost and more reliable power than you use coal and oil.  If you want to pay more for less reliable power then you can’t bitch when the trains stop running.  And the more we move away from coal the more our train will stop running.


Tags: , , , , , , , , , , , , , , , ,

Spain’s Massive Investment in Solar Power has Greatly increased the Cost of their Electric Power

Posted by PITHOCRATES - August 24th, 2013

Week in Review

People think renewable energy is the answer to all our energy problems.  But that isn’t quite so.  In fact, all it does is increase the cost of our electric power.  For sunshine and wind may be free.  But the equipment to harness the energy in sunshine and wind is not free.  It is very, very expensive.  And you need a lot of it.  You will not see one wind turbine service the power needs of one metropolitan area.  You may see a wind farm providing a small percentage of the electric power needs of a large metropolitan area.  And only when the wind blows.

Wind can blow day or night.  But it can also NOT blow day and night.  While solar panels will not work at all at night.  So you have massive investments to install renewable energy generation capacity.  And there will be times when they will provide no power.  So what do you do?  What do you do when the wind doesn’t blow and the sun doesn’t shine?  You turn to old reliable.  The electric grid.

This is why renewable energy is so costly.  It cannot replace our fossil-fuel power plants that can provide reliable power day or night in any type of weather.  It can only supplement what we call our baseload power.  Like our beloved coal-fired power plants.  One of the most cost-efficient ways to produce reliable electric power.  Which the power companies have to still run and maintain day and night.  For those who don’t have a wind turbine or a solar array providing their electric power.  And to light up the night.  So instead of one cost-efficient power generation system we have two systems.  One cost-efficient and one cost-inefficient.  And those who invested heavily into renewable energy are now having to deal with these very real problems (see Out Of Ideas And In Debt, Spain Sets Sights On Taxing The Sun by Kelly Phillips Erb posted 8/19/2013 on Forbes).

With so much sunshine at its disposal, Spain has aggressively pursued the development of solar energy: over the past ten years, the government has made significant advances in pressing solar energy and is one of the top countries in the world with respect to installed photovoltaic (PV) solar energy capacity.

It might, however, be too much of a good thing. Spain is generating so much solar power, according to its government, that production capacity exceeds demand by more than 60%. That imbalance has created a problem for the government which now finds itself in debt to producers. And not by a little bit. The debt is said to have grown to nearly 26 billion euros ($34.73 billion U.S.).

So how do you get out of that kind of debt? You propose incredibly onerous taxes and fines, of course. And you do it on exactly the behavior that you encouraged in the first place: the use of solar energy panels. That’s right. Spain is now attempting to scale back the use of solar panels – the use of which they have encouraged and subsidized over the last decade – by imposing a tax on those who use the panels…

…many residents in Spain generate enough electricity from solar that they get paid to selling the excess energy back to producers. This, it turns out, is a problem. The government is putting a stop to that, too: as part of the reform efforts (read: desperate measures), there will be a prohibition on selling extra energy.

If the power companies are providing all the power at night they have to maintain their power plants.  And their power distribution system.  Which means they even have to trim the trees away from their overhead power lines from people who use solar power during the day.  Nothing changes for the power companies.  Except that they can’t sell as much power as they once did.  So their costs of producing power remain the same.  But their revenue has fallen.  Forcing them to operate at a loss.  Or find other ways to replace their lost revenue.  Which they have to.  Because they must have the same capacity available during the day that they have at night.  Even if they aren’t selling as much power during the day as they are at night.  And the last thing they want to do is buy excess power back from homeowners with solar panels on their house when they’re producing their own power that they can’t sell.

Baseload power plants like coal and nuclear take time to bring on line.  They have to produce the heat that boils water into steam.  Then superheat the steam to remove all water from it.  So the steam can spin the generator turbines without damaging the vanes on the turbine.  And once they start these plants up they run these systems at full capacity where they produce power most cost-efficiently.  During peak demand they may bring on some gas-fired turbines that can start and produce power quickly.  And add them to the grid.  When the peak subsides they can shut down these gas-fired turbines and let the baseload generation carry the remaining load.

The Spanish government invested heavily into solar power for whatever reason.  It’s ‘free’ power.  It’s ‘clean’ power.  Or it was just a good way to create a lot of jobs.  But what Spain has now is a surplus of peak power generation during the day that doesn’t eliminate the need to maintain baseload power generation during the day.  Creating a surplus of electric power during the day no one wants.  While requiring power companies to maintain their baseload power during the day so they can provide power at night.  Incurring great costs on the power companies.  Which must be passed on to the same people who paid for the renewable energies subsidies.  The electric power consumer.

This is a classic example of a Hayekian malinvestment.  Friedrich Hayek of the Austrian school of economics said this is what happens when governments interfere with free markets.  They make investments to produce what they think is best while the market demands something else.  The market demanded low-cost electric power.  Which baseload power plants (coal and nuclear) provided.  But the government intervened and subsidized the more costly solar power.  This bad investment—or malinvestment—has only increased the cost of electric power for the Spanish consumer.  And now the Spanish have a big problem on their hands.  What to do with this surplus of peak power no one wants to pay for?  And how to replace the lost revenue of the power companies so they can cover their costs?  Two problems they didn’t have until the government intervened into the free market.


Tags: , , , , , , , , , , , , , , , , , ,

Even though Solar Panels and Natural Gas Home Generators allow us to Disconnect from the Grid we Shouldn’t

Posted by PITHOCRATES - April 21st, 2013

Week in Review

I remember losing power for a couple of hot and humid days.  The kind where you stick to everything because you’re just covered in sweat.  Making it almost impossible to sleep.  But I was able to borrow my father’s generator.  So I would not have to suffer through that insufferable heat and humidity.  While I was able to run my refrigerator, turn the lights on and even watch television I could not start my central air conditioner.  Even when I shut everything else off.  It was large enough to run the AC.  But it was just not big enough to start it.  I tried.  But as I did that inrush of current (about 40 amps) just stalled the generator.  Which could put out only 30 amps at 240 volts.  So even though I had a 30 amp generator to start an air conditioner that was on a 20 amp circuit breaker it wasn’t big enough.  Because of that momentary inrush of current.  So I suffered through that insufferable heat and humidity until the electric utility restored power.  And I never loved my electric utility more than when they did.

Now suppose I wanted to go to solar power.  How large of a solar array would I need that would start my air conditioner?  If one square inch of solar panel provided 70 milliwatts and you do a little math that comes to approximately a 950 square-foot solar array.  Or an array approximately 20 FT X 50 FT.  Which is a lot of solar panel.  Costly to install.  And if you want to use any electricity at night you’re going to need some kind of battery system.  But you won’t be able to run your air conditioner.  For one start would probably drain down that battery system.  So it’s not feasible to disconnect from the electric grid.  For you’re going to need something else when the sun doesn’t shine.  And because there can be windless nights a windmill won’t be the answer.  Because you’re going to need at least one source of electric power you can rely on to be there for you.  Like your electric utility.  Or, perhaps, your gas utility (see Relentless And Disruptive Innovation Will Shortly Affect US Electric Utilities by Peter Kelly-Detwiler posted 4/18/2013 on Forbes).

NRG’s CEO David Crane is one of the few utility CEO’s in the US who appears to fully appreciate – and publicly articulate – the potential for this coming dynamic.  At recent Wall Street Journal ECO:nomics conference, he indicated that solar power and natural gas are coming on strong, and that some customers may soon decide they do not need the electric utility. “If you have gas into your house and say you want to be as green as possible, maybe you’re anti-fracking or something and you have solar panels on your roof, you don’t need to be connected to the grid at all.”  He predicted that within a short timeframe, we may see technologies that allow for conversion of gas into electricity at the residential level.

If you want carefree and reliable electric power you connect to the electric grid.  Have a natural gas backup generator sized to power the entire house (large enough to even start your central air conditioner).  And a whole-house uninterruptible power supply (UPS).  To provide all your power needs momentarily while you switch from your electric utility to your gas utility.  Well, all but your central air conditioner (and other heavy electrical loads).  Which would have to wait for the natural gas generator to start running.  Because if you connected these to your UPS it might drain the battery down before that generator was up and running.  No problem.  For we can all go a minute or two without air conditioning.

So this combination would work.  With solar panels and a natural gas generator you could disconnect from the electric grid.  But is this something we should really do?  Not everyone will be able to afford solar panels and natural gas generators.  They will have to rely on the electric utility.  Some may only be able to afford the solar panels.  Staying connected to the grid for their nighttime power needs.  But if our electric utilities cut their generation and take it offline permanently it could cause some serious problems.  For what happens when a day of thunderstorms blocks the sun from our solar panels and everyone is still running their air conditioners?  The solar panels can no longer provide the peak power demand that they took from the electric utility (causing the utilities to reduce their generation capacity).  But if they reduced their generation capacity how are they going to be able to take back this peak power demand?  They won’t be able to.  And if they can’t that means rolling brownouts and blackouts.  Not a problem for those with the resources to install a backup generator.  But a big problem for everyone else.

We should study any plans to mothball any baseload electric generation.  For renewable sources of energy may be green but they are not reliable.  And electric power is not just about comfort in our homes.  It’s also about national security.  Imagine the Boston Marathon bombing happening during a time of rolling blackouts.  Imagine all of the things we take for granted not being there.  Like power in our homes to charge our smartphones.  And to power the televisions we saw the two bombers identified on.  We would have been both literally and figuratively in the dark.  Making it a lot easier for the bombers to have made their escape.  There’s a reason why we’re trying to harden our electric grid from cyber attacks.  Because we are simply too dependent on electric power for both the comforts and necessities of life.  Which is why we should be building more coal-fired power plants.  Not fewer.  Because coal is reliable and we have domestic sources of coal.  Ditto for natural gas and nuclear.  The mainstay of baseload power.  Because there is nothing more reliable.  Which comes in handy for national security.


Tags: , , , , , , , , , , , , , , , , , ,

Solar Power grows at 76% Annual Growth but you wouldn’t know it by the Power it Adds to the Grid

Posted by PITHOCRATES - March 16th, 2013

Week in Review

The government subsidized solar power industry is growing like gangbusters.  Thanks to all those government subsidies.  For it appears if it weren’t for that there would be no solar power industry.  Except in space.  Where it is the best choice.  But here on earth?  It just doesn’t work that well (see U.S. Solar Market Grew 76% in 2012 by Ucilia Wang posted 3/14/2013 on Forbes).

Imagine 16 million solar panels blanketing large pieces of land and covering roofs of homes and businesses. That was the number installed in the United States in 2012, when 3.3 gigawatts of the solar equipment materialized to representing a 76% annual growth.

Cumulatively, the country had about 7.2 gigawatts of solar generation capacity from solar panels by the end of 2012, according to a report by GTM Research the Solar Energy Industries Association. That capacity doesn’t mean consumers could tap that much power from solar power projects. The amount of production depends on whether the sun is up and unobstructed by clouds.

So how much useable power do we get from that installed 7.2 gigawatts?  Well, to determine that we must look at the capacity factor.  Which is the ratio of actual power to potential power over a period of time.  According to the Carnegie Mellon Electricity Industry Center they calculated the capacity factor for a solar array in Arizona.  A pretty sunny place.  They found the capacity factor to be 19%.  So if we use that we can calculate the useable power from that installed 7.2 gigawatts.  Which comes to approximately 1.4 gigawatts (0.19 X 7.2 gigawatts).  Now, assuming a house with a 200-amp, 240-volt service uses about 30 amps on average over a period of time that 1.4 gigawatts could power maybe 190,000 homes.  Of course, this power can only go to the grid when the sun is shining.  And in Arizona that means the air conditioners are running at maximum capacity.  So if we assume these houses are consuming 100 amps on average when the sun is shining this 1.4 gigawatts may only power 57,000 homes.

The U.S. is one of the fast-growing solar energy markets in the world, thanks in part to the generous federal tax benefits, loans and grants to support solar technology development and deployment. On top of that, over half of the states require their utilities to sell an increasing amount of renewable electricity.

The declining prices for solar panels in recent years have helped to make them more attractive. The fall — 28% for wholesale silicon solar panel prices — came largely as a result of a global oversupply of solar panels and a fierce competition. While project developers and consumers benefit from the lower prices, dozens of manufacturers have filed for bankruptcy or needed financial rescues to stay alive.

According to the U.S. Census there were 132,312,404 housing units in 2011.  So that massive investment in government subsidized solar power can at best in the southern United States (where it is very sunny) power only 0.043% of the houses in the country.  While providing no power for our businesses or institutions.  Or our street lighting.  Which, of course, it can’t.  As the streetlights only come on when solar power doesn’t work.  When it’s dark.  Because the sun isn’t shining.

Which explains why solar power is so heavily subsidized by government.  Because it is so bad an alternative to coal-fired power plants that no private investors will provide the financing for these boondoggles.  Which is typical for any government investment.  For if there were any value in it private investors would be pouring money into it.  But they’re not.  Because solar power is a bad investment.  For it is such a poor producer of energy.  It has its applications.  Such as in space.  Where it is a cheaper alternative than running power lines to the International Space Station from a coal-fired power plant on earth.  But back on terra firma we are far better off running power lines from coal-fired power plants than from solar arrays.  Because coal is good.  Coal is right.  Coal works.  All of the time.  Even when the sun isn’t shining.


Tags: , , , , , , ,

A Solar Powered Plane is an Engineering Marvel but it won’t Fly you Anywhere

Posted by PITHOCRATES - March 9th, 2013

Week in Review

The Boeing 747-8 is the latest derivative of the 747 family.  It can seat up to 465 people.  And has a gross takeoff weight of 975,000 pounds.  It’s cruising speed is 570 mph.  And has a range of 9,210 miles at maximum take-off weight.  Which means it could fly between California and New York in about 4 and a half hours.  The Boeing 747-8 is truly a remarkable aircraft.  But how does it measure up to other aircraft?  Well, here’s one with a similar wingspan (see Solar-Powered Plane To Make Cross-U.S. Flight by Jesse Emspak posted 3/4/2013 on Discovery News).

A plane that can fly on solar power, day or night, will make its way across the United States this summer — the first time the plane has attempted a cross-continental flight.

Wow.  Can it be the environmentalist were right all along?  That we can replace fossil fuels with solar power?  Well, this appears to be the proof.  A plane that can fly cross-continental.  Day or night.  Why, this can revolutionize air travel.  And put a serious crimp in global warming.  For as great as the 747-8 is it still burns a heck of a lot of jet fuel.  Putting a lot of emissions into the air.  Perhaps this is the future of aviation.  Clean solar power.  Perhaps with some minor adjustments required in our travel plans.  But if it saves the planet perhaps those minor adjustments will be worth it.

The Solar Impulse — built as a project of the Swiss Federal Institute of Technology, the brainchild of Bertrand Piccard and André Borschberg — has the wingspan of a 747 but only weighs as much a Honda Prius. It flies thanks to four turboprop engines powered entirely by batteries and solar panels.

Borschberg told Discovery News that the although the plane could make the whole trip from California to New York in one go, the pilot cannot. The plane travels at 40 to 50 miles per hour, so a cross-country flight would take days. And since there’s only room for a single person in the cockpit, in part to save weight, and no autopilot, the trip will have to be broke up into five legs…

The solar panels are conventional silicon, with an efficiency of about 25 percent. While there are more efficient solar panels such as those used in the satellite industry, those designs are often too heavy, Borschberg said, as they tend to be encased in glass. And although the power is stored in batteries, the engines can run directly from the energy collected by the solar panels. In fact, the plane could be flown on an empty battery.

A 747-8 at maximum take-off weight weighs the same as about 321 Honda Prius hybrids.  And it includes galleys.  And toilets.  So it can stay in the air and fly almost anywhere in the world nonstop.  While the Solar Impulse currently can’t carry any passengers, has no galley and no toilets.  Which may allow about three flights of 4-5 hours a day.  Allowing it to arrive in New York after leaving California some 6 days earlier.

So solar power is not a viable alternative to fossil fuel if we want to fly anywhere.  As remarkable as the Solar Impulse is, and it is truly remarkable, it is only an engineering marvel.  For there is no way that solar power can provide sufficient thrust to carry great weights into the air.  Solar power can work in weightless space for they only have to power electric loads.  They don’t have to provide any thrust to move a heavy mass.

This is a large-scale example showing the limitations of electric-powered transportation.  For transportation to be useful it must be able to move heavy weights.  But the more useful the transport vehicle (the greater the weight it can move) the more battery charge is used for motive power.  Drawing down the battery charge faster (which is drawn down even faster if lights, heat, radio and other electric accessories are used).  Reducing range.  And usefulness.  Leaving the fossil fuel-powered vehicle the only viable vehicle in the foreseeable future.


Tags: , , , , , , ,

India leads the world in Wind and Solar Power but turns to Nuclear Power for Serious Power Generation

Posted by PITHOCRATES - January 19th, 2013

Week in Review

By 2012 India had about 1,045 MW of solar power capacity connected to their electric grid (see Year End Review of Ministry of New and Renewable Energy posted on the Press Information Bureau, Government of India website).  Available when the sun shines.  India had about 18,320 MW of wind power capacity attached to their electric grid.  Available when the wind blows.

In July of 2012 India suffered the largest power outage in history.  Approximately 32,000 MW of generating capacity went offline.  Putting about half of India’s population of 1.22 billion into the dark.  Which her solar and wind capacity was unable to prevent.  So even though they’re expanding these generating systems guess what else they’re doing?  Here’s a hint.  You don’t need as much land to make this power.  And a little of it can create a lot more electric power than solar or wind can (see Areva says India keen to start using EPR reactor by Geert De Clercq posted 1/17/2013 on Reuters India).

Negotiations about the sale of two French nuclear reactors to India are at an advanced stage and Indian authorities are keen to start using French nuclear technology, reactor builder Areva (AREVA.PA) said on Wednesday…

The World Nuclear Association expects India’s nuclear capacity will grow fourfold to 20,000 megawatts by 2020 from just under 5,000 MW today, making it the third-biggest market after China and Russia…

The third-generation European Pressurised Reactor (EPR), conceived following the 1986 Chernobyl disaster, has a double containment wall and a “core catcher” to contain core meltdown. Its 1,600 megawatt capacity is the largest on the market…

The planned site for the EPR reactors in Jaitapur – on the subcontinent’s Arabian Sea coast, 400 km south of Bombay and 230 km north of Goa – could receive up to six nuclear reactors, though at the moment only two EPRs are under consideration.

If you do the math that one site in Jaitapur will be able to produce 9,600 MW.  They’ve been building solar power for a decade or more and have only brought that capacity up to 1,045 MW.  That one nuclear power site will produce 9.2 times the power produced by all the solar power they’ve built to date.  And it doesn’t matter if it’s day or night.  That nuclear power will always be there.

To produce that additional 15,000 MW of nuclear power will only require building two nuclear sites like at Jaitapur.  To get this additional capacity they could double their wind power installations to add another 18,320 MW.  Of course if they did that power would only be available when the wind blew.  Which is why they are installing nuclear power.  Because it’s easier, less costly and more reliable.  And with good reliable power some 610 million people may avoid another power outage like that in 2012.  Or they can build more solar and wind.  And continue to set more records for power outages.


Tags: , , , , , , , , , , ,

Britain will have to add New Nuclear Power Plants to their Renewable Energy Mix to meet Demand

Posted by PITHOCRATES - November 25th, 2012

Week in Review

Coal-fired power plants produce reliable and inexpensive electric power.  But they pollute too much for those on the left.  So they want to replace them with renewable energy sources.  The leading two being solar power and wind power.  Which require a lot more infrastructure to produce the same amount of electric power.  Making these sources very, very expensive.  So no one builds these unless they are highly subsidized by the taxpayers.

But they have other problems besides their high costs.  The sun doesn’t always shine.  And the wind doesn’t always blow.  Which means you can’t replace all coal-fired power plants with these renewable sources.  You also need something that can produce electric power when the sun doesn’t shine.  And the wind doesn’t blow (see Britain to Encourage Both Nuclear and Wind Power by STANLEY REED posted 11/23/2012 on The New York Times).

The British government on Friday announced far-reaching changes in energy regulation designed to encourage development of renewable energy and nuclear power while ensuring the country could meet its electricity needs.

The changes will gradually quadruple the charges levied on consumers and businesses to help support electricity generation from low-carbon sources, to a total of about £9.8 billion, or $15.7 billion, in the 2020-21 fiscal year from £2.35 billion currently.

The government forecasts that the new price supports will add 7 percent, or about £95 a year, to the average household electricity bill. Currently, such charges add 2 percent to energy bills, or £20 a year…

Electricity generated from cleaner sources like nuclear and offshore wind is much more expensive than power generated by coal- or gas-fired plants. Companies will invest in clean energy only if given substantial incentives. The government hopes to attract £110 billion in energy investment through 2020…

Others said they were appalled by support for new nuclear installations. While nuclear plants are low carbon emitters, they bring risks of accidents as well as the unresolved problem of what to do with spent fuel.

Stephan Singer, head of energy policy in Brussels for the World Wildlife Fund, said his organization was “fundamentally opposed” to price supports for nuclear power…

Britain intends to reduce greenhouse gas emissions by 80 percent by 2050 compared with 1990 levels. Until now, wind power has been the main beneficiary of government intervention. Now the government has come to believe that while building more nuclear plants would be costly and controversial, they will be necessary to reach emission targets.

This is the price of going green.  Higher electric bills.  And more nuclear power plants.  For there are no renewable sources that we can build that can provide baseload power.  Power that is there 24/7 regardless of time of day or weather conditions.  Hydroelectric power could but pretty much all the good rivers have already been dammed.  Which lives only one emissions-free energy source.  Nuclear power.  With all the baggage it comes with.  Safety issues.  Spent fuel issues.  Terrorist issues.  Things you don’t have to worry about with a coal-fired power plant.  That’s why they provide the majority of our electric power.  There just isn’t anything else that can do it as well.

But because a coal-fired power plant may put into the atmosphere dangerous emissions over their operating lifetime equal to a volcanic eruption or two the environmentalists won’t have them.  No.  They’d rather you have higher electric bills.  And suffer more power outages.  Of course, they may change their tune once their Internet access becomes spotty due to those power interruptions.  But until then expect higher electric bills.  To fund those new windmills and nuclear power plants.  The costly renewable energy that will replace your beloved coal-fired power plants.


Tags: , , , , , , , , ,

Governor Cuomo cuts Government Regulations to Speed Fuel Deliveries into New York Harbor

Posted by PITHOCRATES - November 4th, 2012

Week in Review

The crisis in the northeast following super storm Sandy has shown why we are ‘addicted’ to oil.  For when everything else fails us it’s what we turn to most (see New York Harbor Reopens, Bringing Hope to the Fuel-Hungry by Martha C. White posted 11/2/2012 on CNBC).

On Friday, Cuomo signed an executive order allowing distributors and transporters to bring gasoline, diesel and kerosene into New York State without being required to meet typical registration requirements.

How do you make things work faster and more efficiently?  Get rid of governmental regulations.  That’s right, when you need things to operate at their best you remove government.  You don’t add more government.  Just think how much better the economy would be if it was this way all of the time.  If it was we probably wouldn’t have a U-6 unemployment rate of 14.6%.

But other means of getting fuel into the area were still limited. And that’s not such good news for drivers who have spent hours lined up for gas or for thousands of homeowners who have been forced to use gas-powered generators to light homes darkened by Sandy.

Attack oil all you want but there is a reason why we’re addicted to it.  It’s the fuel that brings food to our grocery stores.  It’s the fuel that lets us drive to someplace that didn’t lose their electric power so we can find food and shelter.  And it’s the fuel that lets us heat our homes and refrigerate our food when we lose our electric power.  Oil is the go-to fuel when everything else fails us.  It’s Old Reliable.  And at times the difference between life and death.

The Oil Price Information Service reported that two big pipelines were scheduled to resume partial operations Thursday and Friday, although the oil they carry only moves at a rate of three to five miles an hour.

Even if the ports and pipelines were running at full capacity, though, getting that fuel into people’s cars presents other challenges.

One is the ongoing power outages. “We are all dependent on utilities for electricity and that includes service stations and bulk terminals,” Tom Kloza, chief oil analyst at OPIS, said via email…

At the retail level, tankers won’t deliver fuel to a gas station that doesn’t have electricity to power its pumps. As of Thursday, the American Automobile Association estimated that only 35 to 40 percent of gas stations in New York City and New Jersey were operating. On Long Island, the estimate was 30 to 35 percent.

The winds and tidal surge were devastating.  Downing power lines like falling dominoes.  But once the power lines are back up electric power will flow again.  Imagine if they had to rebuild the power generating infrastructure, too.  If the areas affected by super storm Sandy were powered by clean energy of the future.  Wind power and solar power.  If these were swept away like falling dominoes, too, it would take months to install new solar arrays and windmills.  In fact, it would take so long that they would probably attach the grid in those areas to a coal-fired power plant.  Until they could rebuild the clean power of the future.  While the detested coal-fired power plant (detested by the Left) shoulders the load comfortably.  Allowing those ravaged by super storm Sandy to return to normalcy quicker.  In fact, it would be far less costly just to leave these areas connected to a coal-fired power plant.  And smarter.  Because there will be other super storms coming that will just sweep the new solar arrays and windmills away like the previous ones.

If you’re interested in protecting human life during trying times you should embrace oil and coal.  As one will allow people to live when everything else is failing them.  And the other will allow the restoration of power as soon as the power lines are restored.  Something that solar and wind won’t do.


Tags: , , , , , , , , , , , , ,

FT142: “Solar and wind power would take the longest to restore after a devastating weather event.” —Old Pithy

Posted by PITHOCRATES - November 2nd, 2012

Fundamental Truth

Neither Snow nor Rain nor Heat nor Gloom of Night Stays the Production of Electric Power from Coal

What’s the best way to generate electric power?  This is not a trick question.  There is an answer.  And there is only one correct answer.  Coal.  A coal-fired power plant is the best way to generate electric power.  Coal-fired power plants can run 24 hours a day, 7 days a week, 365 days a year.  You never have to turn them off.  They can produce an enormous amount of power for the given infrastructure.  You can put these power plants anywhere.  Where it’s snowy and cold.  Where it’s bright and sunny.  Where it’s cloudy and rainy.  It doesn’t matter.  Coal-fired power plants are like the US Postal Service.  Neither snow nor rain nor heat nor gloom of night stays the production of electric power from coal.

Coal is a highly concentrated form of energy.  Burning a little of it goes a long way.  This is why one coal-fired power plant can add over 2,000 megawatts to the electric grid.  And why about 600 coal-fired power plants can provide over half of our electric power needs.  Coal is one of the most abundant fuel sources in the world, too.  In fact, America has more coal than we can use.  This high domestic supply makes coal cheap.  Which is why coal-produced electric power is some of the cheapest electricity we have.

The only thing that will shut down a coal-fired power plant is running out of coal.  Which doesn’t happen easily.  Look around a power plant and you will see mountains of coal.  And conveyor systems that move that coal to the firebox that burns it.  You’ll probably see more coal arriving.  By unit train.  Trains with nothing but coal cars stretching a mile long.  By river barge.  Or Great Lakes freighter.  Making round-trip after round-trip from the coal mines to the power plants.  We’ve even built power plants near coal mines.  And fed those plants with coal on conveyor systems from the mines to the power plants.  Trains, barges and freighters use self-contained fuel to transport that coal.  And electric power energizes those conveyor systems.  Electric power that comes from the power plant.  Making it difficult to interrupt that flow of coal to our power plants.  Onsite stockpiles of coal can power the plant during brief interruptions in this coal flow.  When the lakes freeze they can get their coal via train.  And if there is a train wreck or a track washout they can reroute trains onto other tracks.  Finally, coal-fired power plants are least dependent on other systems.  Whereas a natural gas-fired power plant is dependent on the natural gas infrastructure (pipelines, pumps, valves, pressure regulators, etc.).  If that system fails so do the natural gas-fired power plants.

Solar Panels produce low DC Currents and Voltages that we have to Convert to AC to Connect them to the Electric Grid

Neither snow nor rain nor heat nor gloom of night stays the production of electric power from coal.  But they sure can interrupt solar power.  Which won’t produce much power if there is snow or rain or night.  Giving it one of the lowest capacity factors.  Meaning that you get a small fraction of useful power from the installed capacity.  Wind power is a little better.  But sometimes the wind doesn’t blow.  And sometimes it blows too strong.  So wind power is not all that reliable either.  Hydroelectric power is more reliable.  But sometimes the rains don’t come.  And if there isn’t enough water behind a hydroelectric dam they have to take some generators offline.  For if they draw down the water level too much the water level behind the dam will be below the inlet to the turbines.  Which would shut off all the generators.

Of course, hydroelectric dams often have reservoirs.  These fill with water when the rains come.  So they can release their water to raise the water level behind a dam when the rains don’t come.  These reservoirs are, then, stored electric power.  For a minimal cost these can store a lot of electric power.  But it’s not an endless supply.  If there is a prolonged draught (or less snow in the mountains to melt and run off) even the water level in the reservoirs can fall too low to raise the water level behind the dam high enough to reach the water inlets to the turbines.

Storing electric power is something they can do with solar power, too.  Only it’s a lot more complex.  And a lot more costly.  Solar panels produce low DC currents and voltages.  Like small batteries in our flashlights.  So they have to have massive arrays of these solar panels connected together.  Like multiple batteries in a large flashlight.  They have to convert the DC power to AC power to connect it to the grid.  With some complicated and costly electronics.  And any excess power these solar arrays produce that they don’t feed into the grid they can store in a battery of batteries.  And as we know from the news on our electric cars, current battery technology does not hold a lot of charge.  Barely enough to drive a 75 mile round-trip.  So you’d need a lot of batteries to hold enough useful power to release into the grid after the sun goes down.

Storms like Sandy would wipe out Solar Arrays and Wind Farms with their High Winds and Storm Surges

When a 9.0 magnitude earthquake hit Japan in 2011 the Fukushima Daiichi Nuclear Power Plant suffered no damage.  Then the storm surge came.  Flooding the electrical equipment with highly conductive and highly corrosive seawater.  Shorting out and destroying that electrical equipment.  Shutting down the reactor cooling pumps.  Leading to a partial reactor core meltdown.  Proving what great damage can result when you mix water and electric equipment.  Especially when that water is seawater.

Hurricane Sandy hammered the Northeastern seaboard.  High winds and a storm surge destroyed cities and neighborhoods, flooded subway tunnels and left tens of millions of people without power.  And they may be without power for a week or more.  Restoring that power will consist primarily of fixing the electric grid.  To reconnect these homes and businesses to the power plants serving the electric grid.  They don’t have to build new power plants.  Now if these areas were powered by solar and wind power it would be a different story.  First of all, they would have lost power a lot earlier as the driving rains and cloud cover would have blocked out most of the sun.  The high winds would have taken the windmills offline.  For they shut down automatically when the winds blow too hard to prevent any damage.  Of course, the high winds and the storm surge would probably have damaged these as well as the power lines.  While shorting out and destroying all of that electronic equipment (to convert the DC power to AC power) and the battery storage system

So instead of just installing new power lines they would have to install new windmills, solar arrays, electronic equipment and storage batteries.  Requiring long manufacturing times.  Then time to transport.  And then time to install.  At a far greater cost than just replacing downed wires.  Leaving people without electric power for weeks.  Perhaps months.  Or longer.  This is why using coal-fired power plants is the best way to generate electric power.  They’re less costly.  Less fragile.  And less complicated.  You just don’t need such a large generating infrastructure.  Whereas solar arrays and wind farms would cover acres of land.  And water (for the wind farms).  And storms like Sandy could wipe these out with their high winds and storm surges.


Tags: , , , , , , , , , , , , , , , , , , , , , , ,

« Previous Entries