Celestial Navigation, Insurance and the Joint Stock Company

Posted by PITHOCRATES - July 10th, 2013

Technology 101

(Originally published November 30th, 2011)

Despite Precise Celestial Navigation a lot of Ships and Valuable Cargoes still got Lost at Sea

Open sea navigation was once very perilous.  It took a long time before ships ventured from sight of the shoreline.  And a lot of technology.  Boats used to go the long way across the Mediterranean Sea.  Because being in open water at night without any visible landmarks was very dangerous.  So they hugged the coastline.  Adding days to every voyage.  And more danger.  Because the longer at sea the greater the risk there was of sinking.  Especially when you were skirting the rock-infested shallows of the shoreline.

The Sumerians charted the stars.  The Greeks continued this work, producing charts that could tell you what latitude (north/south position) you were at by looking at the stars and planets.  By measuring the angle of the stars and planets above the horizon.  The Arabs created one of the first tools to measure these angles.  The kamal.  Knowing this angle you could do a little math and look at a pre-calculated table of values.  And get your latitude.  Better instruments followed.  The cross-staff.  The astrolabe.   And then the sextant.  The gold standard of angle measuring until the advent of Global Positioning Satellites (GPS).  Calculating longitude (east/west position) was a bit more complicated.  Because the earth rotated.  Which required some more skillful measuring and more calculations.  And/or a reliable and accurate clock.  To adjust your results by the time of day.  As the time as well as the stars moved from east to west as the planet rotated.

The Chinese developed the magnetic compass.  A helmsman steered his ship by the compass.  The navigator checked the angles of celestial bodies (sun, moon, stars and planets), checked time and the ship’s speed to fix the ship’s position.  By determining latitude and longitude.  The navigator fed course headings and course corrections to the helmsman.  Armed with these skills, tools, celestial charts and tables, the navigator could do a little math and navigate a ship across a vast ocean day or night to any port in the world.  Transporting valuable cargoes safely and timely across the globe.  Pretty impressive for the time.  But despite this precise celestial navigation, a lot of ships still got lost at sea.  As well as their valuable cargoes.

The Joint-Stock Company and Insurance Reduced the High Risks of Transoceanic Shipping

No matter how well a navigator could fix a ship’s position there were some things he just couldn’t do.  Such as avoid an uncharted reef.  Prevent a mutiny.  Fend off pirates.  Fend off enemy warships.  Make storms go away.  Or even see through dense fog.  Simply put being on a small wooden ship in the middle of an ocean was very dangerous.  Which poised quite the problem for early global trade.

It was a huge investment to put a ship to sea.  It took another huge investment to fill a ship with valuable cargo.  And if that ship didn’t make it back to sell that cargo it was very bad news for the investor.  A lost ship could financially ruin them.  So not only could you get rich in this new global trade you could become impoverished.  Which made rich people reluctant to finance this early trade.  Because it was so risky.  Two things helped to reduce this risk to manageable levels.  Insurance.  And the joint-stock company.

A group of investors could buy stock into a company that was going to make numerous voyages on various ships.  In exchange for a share of the profits from this trade each investor paid a share of its cost.  Thus the joint-stock company spread the risk to multiple investors, reducing the risk to any one person.  So one lost ship would not cause financial ruin to any one investor.  Thus encouraging investment into this lucrative new trade of transoceanic shipping.  And with the advent of insurance, shippers could insure each voyage for a small affordable fee.  By collecting this small fee on every voyage the insurer could pay for the few ships and cargoes lost at sea.  Not the investors.  Thus further encouraging investment into this very risky endeavor.

Celestial Navigation, Insurance and the Joint-Stock Company made Transoceanic Shipping Possible

The smartphone you can’t live without today most likely came to you via a large container ship from a port across some ocean.  It made a long and perilous voyage to get to you.  Which wouldn’t have been possible without celestial navigation, insurance and the joint-stock company.  The things that made transoceanic shipping possible.  Most of which are still in use today.  As they were when brave mariners took to the open seas in those small wooden ships of yesteryear.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Marine Insurance, General Average, Mesopotamia, Genoa, Middle Class, Capitalism, London Coffeehouses and Lloyd’s of London

Posted by PITHOCRATES - April 3rd, 2012

History 101

It was in Genoa that Marine Insurance became a Standalone Industry

Risk management dates back to the dawn of civilization.  Perhaps the earliest device we used was fire.  Fire lit up the caves we moved into.  And scared the predators out.  As we transitioned from hunting and gathering to farming we gathered and stored food surpluses to help us through less bountiful times.  To avoid famine.  As artisans rose up and created a prosperous middle class we also created defensive military forces.  To protect that prosperous middle class from outsiders looking to plunder it.

As we put valuable cargoes on ships and sent them long distances over the water we encountered a new kind of risk.  The risk that these cargoes wouldn’t make it to their destinations.  So we created marine insurance.  Including something called ‘general average’.  An agreement where the several shippers shared the cost of any loss of cargo.  If they had to jettison some cargo overboard to save the rest of the cargo or to save the ship.  Some of the proceeds from the cargo they delivered paid for the cargo they didn’t deliver.  Some merchants who borrowed money to finance a shipment paid a little extra.  A risk ‘premium’.  Should the shipment not reach its destination the lender would forgive the loan.

So how long has marine insurance been around?  A long time.  Some of these practices were noted in the Code of Hammurabi (circa 1755 B.C.).  For ancient Mesopotamia was a trading civilization.  That shipped on the Tigris and Euphrates and their tributaries.  Out into the Arabian sea.  And beyond.  Following the coasts until advances in navigation and sail power took them farther from land.  The Greeks and Romans insured their valuable cargoes, too.  As did the Italian city-states that followed them.  Who ruled Mediterranean trade.  And it was in Genoa that marine insurance became a standalone industry.  No longer bundled with other contracts for an additional fee.

As the British Maritime Industry took off so did Lloyd’s of London

But the cargoes got larger.  And the voyages went farther.  Until they were crossing the great oceans.  Increasing the chances that this cargo wasn’t going to make it to its destination.  And when they didn’t the financial losses were larger than ever before.  Because the ships were larger than ever before.  So as the center of shipping moved from the Mediterranean to the ocean trade routes plied by the Europeans (Portugal, Spain, France, the Netherlands and England) the insurance industry followed.  And took the concept of risk management to new levels.

With trade came a prosperous middle class.  Where wealth was no longer the privilege of landholders.  Capitalism transferred that wealth to manufacturers, bankers, merchants, ship owners and, of course, insurers.  You didn’t have to own land anymore to be rich.  All you needed was skill, ability and drive.  It was a brave new world.  And these new capitalists gathered together in London coffeehouses to discuss business.  Including one owned by Edward Lloyd.  On Tower Street.  Where those particularly interested in shipping came to learn the latest in this industry.  And it was where shippers and merchants came to find underwriters to insure their ships and cargoes.

This was the birth of Lloyd’s of London.  And as the British maritime industry took off so did Lloyd’s of London.  As the British Empire spread across the globe international trade grew to new heights.  The Royal Navy protected the sea lanes for that trade.  The British Army protected their far-flung empire.  And Lloyd’s of London insured that valuable cargo.  It was a very symbiotic relationship.  All together they made the British Empire rich.  To show their appreciation of the Royal Navy making this possible Lloyd’s set up a fund to provide for those wounded in the service of their county following Lord Nelson’s victory over the combined French and Spanish fleets at the Battle of Trafalgar.  They continue to provide support for veterans today.  In short, Lloyd’s of London was the place to go to meet your global insurance needs.  From marine insurance they branched into providing ‘inland marine’ insurance needs.  Providing risk management to property beyond ships plying the world’s oceans. 

The Purpose of Insurance is to Let Life Go On after Unexpected and Catastrophic Events

Cuthbert Heath led Lloyd’s in the development of the non-marine insurance business.  Underwriting policies for among other things earthquake and hurricane insurance coverage.   And Lloyd’s helped to rebuild San Francisco after the 1906 earthquake.  With Heath ordering that they pay all of their policies in full irrespective of their policy terms.  They could do that because they were profitable.  Which is a good thing.  Insurers need to be profitable to pay these large claims without being forced out of business.  Which is why when the Titanic sunk in 1912 they were able to pay all policies in full.  And to continue on insuring the shippers and merchants that followed Titanic.  To allow life to proceed after these great tragedies.  And they would do it time and again.  Following 9/11.  And Hurricane Katrina.

This is the purpose of insurance.  Risk management.  So unexpected and catastrophic events don’t end life as we know it.  But, instead, it allows us to carry on.  Even after some of the worst disasters.  Because life must go on.  And that’s what insurance does.  Even people who rely on a particular body part for their livelihood have gone to Lloyd’s to buy insurance.  Perhaps the most famous being Betty Grable.  Who insured her legs for $1 million in 1940.  Pittsburgh Steeler Troy Polamalu has a lucrative endorsement with a shampoo company.  And insured his long hair for $1 million.  Rolling Stones guitarist Keith Richards insured his hands for $1.6 million.  America Ferrera (Ugly Betty) has an endorsement deal with a toothpaste company.  And they insured her smile for $10 million.  Even ‘the Boss’ Bruce Springsteen insured his voice for $6 million. 

People hate insurance companies.  Because they don’t understand how insurance works.  For they only know that they pay a lot in premiums and never receive anything in return.  But this is the way risk management is supposed to work.  And we need risk management.  We need insurance companies.  And we need insurance companies to be profitable.  Meaning that most of us will never see anything in return for all of our premium payments.  So these companies can pay for the large losses of the few who sadly do see something in return for all of their payments.  For insurance companies protect our wealth.  And earning potential.  So life can go on.  Whether we’re raising a family and planning for our children’s future.  Or taking precautions for some unforeseen accident to one of our body parts that may limit our future earning potential.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Trade, Steam Power, Reciprocating Steam Engine, Railroading, Janney Coupler and Westinghouse Air Brake

Posted by PITHOCRATES - January 25th, 2012

Technology 101

Early Cities emerged on Rivers and Coastal Water Regions because that’s where the Trade Was

The key to wealth and a higher standard of living has been and remains trade.  The division of labor has created a complex and rich economy.  So that today we can have many things in our lives.  Things that we don’t understand how they work.  And could never make ourselves.  But because of a job skill we can trade our talent for a paycheck.  And then trade that money for all those wonderful things in our economy.

Getting to market to trade for those things, though, hasn’t always been easy.  Traders helped here.  By first using animals to carry large amounts of goods.  Such as on the Silk Road from China.  And as the Romans moved on their extensive road network.  But you could carry more goods by water.  Rivers and coastal waterways providing routes for heavy transport carriers.  Using oar and sail power.  With advancements in navigation larger ships traveled the oceans.  Packing large holds full of goods.  Making these shippers very wealthy.  Because they could transport much more than any land-based transportation system.  Not to mention the fact that they could ‘bridge’ the oceans to the New World.

This is why early cities emerged on rivers and coastal water regions.  Because that’s where the trade was.  The Italian city-states and their ports dominated Mediterranean trade until the maritime superpowers of Portugal, Spain, The Netherlands, Great Britain and France put them out of business.  Their competition for trade and colonies brought European technology to the New World.  Including a new technology that allowed civilization to move inland.  The steam engine.

Railroading transformed the Industrial Economy

Boiling water creates steam.  When this steam is contained it can do work.  Because water boiling into steam expands.  Producing pressure.  Which can push a piston.  When steam condenses back into water it contracts.  Producing a vacuum.   Which can pull a piston.  As the first useable steam engine did.  The Newcomen engine.  First used in 1712.  Which filled a cylinder with steam.  Then injected cold water in the cylinder to condense the steam back into water.  Creating a vacuum that pulled a piston down.  Miners used this engine to pump water out of their mines.  But it wasn’t very efficient.  Because the cooled cylinder that had just condensed the steam after the power stroke cooled the steam entering the cylinder for the next power stroke.

James Watt improved on this design in 1775.  By condensing the steam back into water in a condenser.  Not in the steam cylinder.  Greatly improving the efficiency of the engine.  And he made other improvements.  Including a design where a piston could move in both directions.  Under pressure.  Leading to a reciprocating engine.  And one that could be attached to a wheel.  Launching the Industrial Revolution.  By being able to put a factory pretty much anywhere.  Retiring the waterwheel and the windmill from the industrial economy.

The Industrial Revolution exploded economic activity.  Making goods at such a rate that the cost per unit plummeted.  Requiring new means of transportation to feed these industries.  And to ship the massive amount of goods they produced to market.  At first the U.S. built some canals to interconnect rivers.  But the steam engine allowed a new type of transportation.  Railroading.  Which transformed the industrial economy.  Where we shipped more and more goods by rail.  On longer and longer trains.  Which made railroading a more and more dangerous occupation.  Especially for those who coupled those trains together.  And for those who stopped them.  Two of the most dangerous jobs in the railroad industry.  And two jobs that fell to the same person.  The brakeman.

The Janney Coupler and the Westinghouse Air Brake made Railroading Safer and more Profitable

The earliest trains had an engine and a car or two.  So there wasn’t much coupling or decoupling.  And speed and weight were such that the engineer could stop the train from the engine.  But that all changed as we coupled more cars together.  In the U.S., we first connected cars together with the link-and-pin coupler.  Where something like an eyebolt slipped into a hollow tube with a hole in it.  As the engineer backed the train up a man stood between the cars being coupled and dropped a pin in the hole in the hollow tube through the eyebolt.  Dangerous work.  As cars smashed into each other a lot of brakemen still had body parts in between.  Losing fingers.  Hands.  Some even lost their life.

Perhaps even more dangerous was stopping a train.  As trains grew longer the locomotive couldn’t stop the train alone.  Brakemen had to apply the brakes evenly on every car in the train.  By moving from car to car.  On the top of a moving train.  Jumping the gap between cars.  With nothing to hold on to but the wheel they turned to apply the brakes.  A lot of men fell to their deaths.  And if one did you couldn’t grieve long.  For someone else had to stop that train.  Before it became a runaway and derailed.  Potentially killing everyone on that train.

As engines became more powerful trains grew even longer.  Resulting in more injuries and deaths.  Two inventions changed that.  The Janney coupler invented in 1873.  And the Westinghouse Air Brake invented in 1872.  Both made mandatory in 1893 by the Railroad Safety Appliance Act.  The Janney coupler is what you see on U.S. trains today.  It’s an automatic coupler that doesn’t require anyone to stand in between two cars they’re coupling together.  You just backed one car into another.  Upon impact, the couplers latch together.  They are released by a lifting a handle accessible from the side of the train.

The Westinghouse Air Brake consisted of an air line running the length of the train.  Metal tubes under cars.  And those thick hoses between cars.  The train line.  A steam-powered air compressor kept this line under pressure.  Which, in turn, maintained pressure in air tanks on each car.  To apply the brakes from the locomotive cab the engineer released pressure from this line.  The lower pressure in the train line opened a valve in the rail car air tanks, allowing air to fill a brake piston cylinder.  The piston moved linkages that engaged the brake shoes on the wheels.  With braking done by lowering air pressure it’s a failsafe system.  For example, if a coupler fails and some cars separate this will break the train line.  The train line will lose all pressure.  And the brakes will automatically engage, powered by the air tanks on each car.

Railroads without Anything to Transport Produce no Revenue

Because of the reciprocating steam engine, the Janney coupler and the Westinghouse Air Brake trains were able to get longer and faster.  Carrying great loads great distances in a shorter time.  This was the era of railroading where fortunes were made.  However, those fortunes came at a staggering cost.  For laying track cost a fortune.  Surveying, land, right-of-ways, grading, road ballast, ties, rail, bridges and tunnels weren’t cheap.  They required immense financing.  But if the line turned out to be profitable with a lot of shippers on that line to keep those rails polished, the investment paid off.  And fortunes were made.  But if the shippers didn’t appear and those rails got rusty because little revenue traveled them, fortunes were lost.  With losses so great they caused banks to fail.

The Panic of 1893 was caused in part by such speculation in railroads.  They borrowed great funds to build railroad lines that could never pay for themselves.  Without the revenue there was no way to repay these loans.  And fortunes were lost.  The fallout reverberated through the U.S. banking system.  Throwing the nation into the worst depression until the Great Depression.  Thanks to great technology.  That some thought was an automatic ticket to great wealth.  Only to learn later that even great technology cannot change the laws of economics.  Specifically, railroads without anything to transport produce no revenue.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Celestial Navigation, Insurance and the Joint Stock Company

Posted by PITHOCRATES - November 30th, 2011

Technology 101

Despite Precise Celestial Navigation a lot of Ships and Valuable Cargoes still got Lost at Sea

Open sea navigation was once very perilous.  It took a long time before ships ventured from sight of the shoreline.  And a lot of technology.  Boats used to go the long way across the Mediterranean Sea.  Because being in open water at night without any visible landmarks was very dangerous.  So they hugged the coastline.  Adding days to every voyage.  And more danger.  Because the longer at sea the greater the risk there was of sinking.  Especially when you were skirting the rock-infested shallows of the shoreline.

The Sumerians charted the stars.  The Greeks continued this work, producing charts that could tell you what latitude (north/south position) you were at by looking at the stars and planets.  By measuring the angle of the stars and planets above the horizon.  The Arabs created one of the first tools to measure these angles.  The kamal.  Knowing this angle you could do a little math and look at a pre-calculated table of values.  And get your latitude.  Better instruments followed.  The cross-staff.  The astrolabe.   And then the sextant.  The gold standard of angle measuring until the advent of Global Positioning Satellites (GPS).  Calculating longitude (east/west position) was a bit more complicated.  Because the earth rotated.  Which required some more skillful measuring and more calculations.  And/or a reliable and accurate clock.  To adjust your results by the time of day.  As the time as well as the stars moved from east to west as the planet rotated.

The Chinese developed the magnetic compass.  A helmsman steered his ship by the compass.  The navigator checked the angles of celestial bodies (sun, moon, stars and planets), checked time and the ship’s speed to fix the ship’s position.  By determining latitude and longitude.  The navigator fed course headings and course corrections to the helmsman.  Armed with these skills, tools, celestial charts and tables, the navigator could do a little math and navigate a ship across a vast ocean day or night to any port in the world.  Transporting valuable cargoes safely and timely across the globe.  Pretty impressive for the time.  But despite this precise celestial navigation, a lot of ships still got lost at sea.  As well as their valuable cargoes.

The Joint-Stock Company and Insurance Reduced the High Risks of Transoceanic Shipping

No matter how well a navigator could fix a ship’s position there were some things he just couldn’t do.  Such as avoid an uncharted reef.  Prevent a mutiny.  Fend off pirates.  Fend off enemy warships.  Make storms go away.  Or even see through dense fog.  Simply put being on a small wooden ship in the middle of an ocean was very dangerous.  Which poised quite the problem for early global trade.

It was a huge investment to put a ship to sea.  It took another huge investment to fill a ship with valuable cargo.  And if that ship didn’t make it back to sell that cargo it was very bad news for the investor.  A lost ship could financially ruin them.  So not only could you get rich in this new global trade you could become impoverished.  Which made rich people reluctant to finance this early trade.  Because it was so risky.  Two things helped to reduce this risk to manageable levels.  Insurance.  And the joint-stock company.

A group of investors could buy stock into a company that was going to make numerous voyages on various ships.  In exchange for a share of the profits from this trade each investor paid a share of its cost.  Thus the joint-stock company spread the risk to multiple investors, reducing the risk to any one person.  So one lost ship would not cause financial ruin to any one investor.  Thus encouraging investment into this lucrative new trade of transoceanic shipping.  And with the advent of insurance, shippers could insure each voyage for a small affordable fee.  By collecting this small fee on every voyage the insurer could pay for the few ships and cargoes lost at sea.  Not the investors.  Thus further encouraging investment into this very risky endeavor.

Celestial Navigation, Insurance and the Joint-Stock Company made Transoceanic Shipping Possible

The smartphone you can’t live without today most likely came to you via a large container ship from a port across some ocean.  It made a long and perilous voyage to get to you.  Which wouldn’t have been possible without celestial navigation, insurance and the joint-stock company.  The things that made transoceanic shipping possible.  Most of which are still in use today.  As they were when brave mariners took to the open seas in those small wooden ships of yesteryear.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , ,