Heat Transfer, Conduction, Convection, Radiation and Microwave Cooking

Posted by PITHOCRATES - September 4th, 2013

Technology 101

At the Atomic Level Vibrating Atoms create Heat

We make life comfortable and livable by transferring heat.  And by preventing the transfer of heat.  In fact, once we discovered how to make fire our understanding of heat transfer began and led to the modern life we know today.

At the atomic level heat is energy.  Vibrating atoms.  With electrons swirling around and jumping from one atom to another.  The more these atoms do this the hotter something is.  There is little atomic motion in ice.  And ice is very cold.  While there is a lot of motion in a pot of boiling water.  Which is why boiling water is very hot.

How do we get a pot of water to boil?  By transferring heat from a heat source.  A gas or electric burner.  This heat source is in contract with the pot.  The heat source agitates the atoms in the pot.  They begin to vibrate.  Causing the pot to heat up.  The water is in contact with the pot.  The agitated atoms in the pot agitate the atoms in the water.  Heating them up.  Giving us boiling water to cook with.  Or to make a winter’s day pleasant indoor.

Fin-Tube Heaters create a Rising Convection Current of Warm Air to Counter a Falling Cold Draft

If you touch a single-pane window in the winter in your house it feels very cold.  Cold outside air is in contact with the glass of the window.  Which slows the movement of the atoms.  Bringing the temperature down.  This cold temperature doesn’t conduct into the house.  The heat conducts out of the house.  Because there is no such thing as cold.  As cold is just the absence of heat.

The warm air inside the house comes in contact with the cold window.  Transferring heat from the air to the window.  The atoms in the air slow down.  The air cools down.  And falls.  This is the draft you feel at a closed window.  Cold air is heavier than warm air.  Which is why hot air rises.  And cold air falls.  As the cold air falls it pulls warmer air down in a draft.  Cooling it off.  Creating a convection current.

To keep buildings comfortable in the winter engineers design hot-water fin-tube heaters under each exterior window.  Gas burners heat up water piping inside a boiler.  The heat from the fire transfers heat to the boiler tubes.  Which transfers it to the water inside the tubes.  We then pump this heating hot water throughout the building.  As it enters a fin-tube heater under a window the hot water transfers heat to the heating hot water piping.  Attached to this piping are fins.  The heat transfers from the pipe to the fins.  Which heats the air in contact with these fins.  Hot air rises up and ‘washes’ the cold windows with warm air.  As it rises it pulls colder air up from the floor and through the heated fins.  Creating a convection current of warm air rising up to counter the falling cold draft.

Microwave Cooking won’t Sear Beef or Caramelize Onions like Conductive or Radiation Cooking

If you’ve ever waited for a ride outside an airport terminal on a cold winter’s day you’ve probably appreciated another type of heat transfer.  Radiation.  Outdoor curbside is open to the elements.  So you can’t heat the space.  Because there is no space.  Just a whole lot of outdoors.  But if you stand underneath a heater you feel toasty warm.  These are radiators.  A gas-fired or electric heating element that gets very, very hot.  So hot that energy radiates off of it.  Warming anything underneath it.  But if you step out from underneath you will feel cold.  It’s the same sitting around a campfire.  If you’re cold and wet you can sit by the fire and warm up in the fire’s radiation.  Move away from the fire, though, and you’re just cold and wet.

We use all these methods of heat transfer to cook our food.  Making life livable.  And enjoyable.  When we pan-fry we use conduction heating.  Transferring the heat from the burner to the pan to the food.  When we bake we use convection heating.  Transferring the heat from the burner to heat the air in the oven.  Which heats our food.  When we use the broiler we use radiation heating.  Using electric heating elements that glow red-hot, radiating energy into the food underneath them.  A convection oven adds a fan to an oven.  To blow heated air around our food.  Decreasing cooking time.

There’s one other cooking method.  One that is very common in many restaurants.  And in most homes.  But real chefs rarely use this method.  Microwaving.  With a microwave oven.  They’re great, convenient and fast but fine cooking isn’t about speed.  It’s about layering flavors and seasoning.  Which takes time.  Which you don’t get a lot of when a microwave begins vibrating the atoms in the water molecules in your food.   Which is how microwaves cook.  Cooking by vibrating atoms in your food brings temperatures up to serving temperatures.  Unlike conduction heating such as in pan-frying where we bring much higher temperatures into contact with our food.  Allowing us to sear beef and caramelize onions.  Something you can’t do in a microwave oven.  Which is why real chefs don’t use them.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , ,

Fire, Oil Lamp, Candle, Wicks, Gas Lights, Incandescence, Incandescent Light Bulb, Fluorescence and Compact Fluorescent Lamp

Posted by PITHOCRATES - February 20th, 2013

Technology 101

(Originally published March 28th, 2012)

A Lit Match heats the Fuel Absorbed into a Wick, Vaporizes it, Mixes it with Oxygen and Ignites It

Fire changed the world.  From when Homo erectus first captured it.  Around 600,000 BC.  In China.  They saw it.  Maybe following a lightning strike.  Seeing it around volcanic activity.  Perhaps a burning natural gas vent.  Whatever.  They saw fire.  Approached it.  And learned not to fear it.  How to add fuel to it.  To transfer it to another fuel source.  To carry it.  They couldn’t create fire.  But they could manage it.  And use it.  It was warm.  And bright.  So they brought it indoors.  To light up their caves.  Scare the predators out.  To use it to heat.  And to cook.  Taking a giant leap forward for mankind.

When man moved into man-made dwellings they brought fire with them.  At first a one-room structure with a fire in the center of it.  And a hole in the roof above it.  Where everyone gathered around to eat.  Stay warm.  Sleep.  Even to make babies.  As there wasn’t a lot of modesty back then.  Not that anyone complained much.  What was a little romance next to you when you were living in a room full of smoke, soot and ash?  Fireplaces and chimneys changed all that.  Back to back fireplaces could share a chimney.  Providing more heat and light.  Less smoke and ash.  And a little privacy.  Where the family could be in one room eating, staying warm, reading, playing games and sleeping.  While the grownups could make babies in the other room.

As we advanced so did our literacy.  After a hard day’s work we went inside.  After the sun set.  To read.  Write letters.  Do some paperwork for the business.  Write an opera.  Whatever.  Even during the summer time.  When it was warm.  And we didn’t have a large fire burning in the fireplace.  But we could still see to read and write.  Thanks to candles.  And oil lamps.  One using a liquid fuel.  One using a solid fuel.  But they both operate basically the same.  The wick draws liquid (or liquefied) fuel via capillary action.  Where a porous substance placed into contact with a liquid will absorb that liquid.  Like a paper towel or a sponge.  When you place a lit match into contact with the wick it heats the fuel absorbed into the wick and vaporizes it.  Mixing it with the oxygen in the air.  And ignites it.  Creating a flame.  The candle works the same way only starting with a solid fuel.  The match melts the top of this fuel and liquefies it.  Then it works the same way as an oil lamp.  With the heat of the flame melting the solid fuel to continue the process.

Placing a Mantle over a Flame created Light through Incandescence (when a Heated Object emits Visible Light)

Two popular oils were olive oil and whale oil.  Beeswax and tallow were common solid fuels.  Candles set the standard for noting lighting intensity.  One candle flame produced one candlepower.  Or ‘candela’ as we refer to it now.   (Which equals about 13 lumens – the amount of light emitted by a source).  If you placed multiple candles into a candelabrum you could increase the lighting intensity.  Three candles gave you 3 candela of light to read or write by.  A chandelier with numerous candles suspended from the ceiling could illuminate a room.  This artificial light shortened the nights.  And increased the working day.  In the 19th century John D. Rockefeller gave the world a new fuel for their oil lamps.  Kerosene.  Refined from petroleum oil.  And saved the whales.  By providing a more plentiful fuel.  At cheaper prices.

By shortening the nights we also made our streets safer.  Some cities passed laws for people living on streets to hang a lamp or two outside.  To light up the street.  Which did indeed help make the streets brighter.  And safer.  To improve on this street lighting idea required a new fuel.  Something in a gas form.  Something that you could pump into a piping system and route to the new street lamps.  A gas kept under a slight pressure so that it would flow up the lamp post.  Where you opened the gas spigot at night.  And lit the gas.  And the lamp glowed until you turned off the gas spigot in the morning.  Another advantage of gas lighting was it didn’t need wicks.  Just a nozzle for the gas to come out of where you could light it.  So there was no need to refuel or to replace the wicks.  Thus allowing them to stay lit for long periods with minimum maintenance.  We later put a mantle over the flame.  And used the flame to heat the mantle which then glowed bright white.  A mantle is like a little bag that fits over the flame made out of a heat resistant fabric.  Infused into the fabric are things that glow white when heated.  Rare-earth metallic salts.  Which change into solid oxides when heated to incandescence (when a heated object emits visible light).

One of the first gases we used was coal-gas.  Discovered in coal mines.  And then produced outside of a coal mine from mined coal.  It worked great.  But when it burned it emitted carbon.  Like all these open flames did.  Which is a bit of a drawback for indoor use.  Filling your house up with smoke.  And soot.  Not to mention that other thing.  Filling up your house with open flames.  Which can be very dangerous indoors.  So we enclosed some of these flames.  Placing them in a glass chimney.  Or glass boxes.  As in street lighting.  Enclosing the flame completely (but with enough venting to sustain the flame) to prevent the rain form putting it out.  This glass, though, blackened from all that carbon and soot.  Adding additional maintenance.  But at least they were safer.   And less of a fire hazard.  Well, at least less of one type of fire hazard.  From the flame.  But there was another hazard.  We were piping gas everywhere.  Outside.  Into buildings.  Even into our homes.  Where it wasn’t uncommon for this gas to go boom.  Particularly dangerous were theatres.  Where they turned on the gas.  And then went to each gas nozzle with an open fire on a stick to light them.  And if they didn’t move quickly enough the theatre filled with a lot of gas.  An enclosed space filled with a lot of gas with someone walking around with an open fire on a stick.  Never a good thing.

Fluorescent Lighting is the Lighting of Choice in Commercial, Professional and Institutional Buildings

Thomas Edison fixed all of these problems.  By finding another way to produce incandescence. By running an electrical current through a filament inside a sealed bulb.  The current heated the filament to incandescence.  Creating a lot of heat.  And some visible light.  First filaments were carbon based.  Then tungsten became the filament of choice.  Because they lasted longer.  At first the bulbs contained a vacuum.  But they found later that a noble gas prevented the blackening of the bulb.  The incandescent light bulb ended the era of gas lighting.  For it was safer.  Required less maintenance.  And was much easier to operate.  All you had to do was flick a switch.  As amazing as the incandescent light bulb was it had one big drawback.  Especially when we use a lot of them indoors.  That heat.  As the filament produced far more heat than light.  Which made hot buildings hotter.  And made air conditioners work harder getting that heat out of the building.  Enter the fluorescent lamp.

If phosphor absorbs invisible short-wave ultraviolet radiation it will fluoresce.  And emit long-wave visible light.  But not through incandescence.  But by luminescence.  Instead of using heat to produce light this process uses cooler electromagnetic radiation.  Which forms the basis of the fluorescent lamp.  A gas-discharge lamp.  The most common being the 4-foot tube you see in office buildings.  This tube has an electrode at each end.  Contains a noble gas (outer shell of valence electrons are full and not chemically reactive or electrically conductive) at a low pressure.  And a little bit of mercury.  When we turn on the lamp we create an electric field between the electrodes.  As it grows in intensity it eventually pulls electrons out of their valence shell ionizing the gas into an electrically conductive plasma.  This creates an arc between the electrodes.  This charged plasma field excites the mercury.  Which produces the invisible short-wave ultraviolet radiation that the phosphor absorbs.  Causing fluorescence.

One candle produces about 13 lumens of light.  Barely enough to read and write by.  Whereas a 100W incandescent light bulb produces about 1,600 lumens.  The equivalent of 123 candles.  In other words, one incandescent lamp produces the same amount of light as a 123-candle chandelier.  Without the smoke, soot or fire hazard.  And the compact fluorescent lamp improves on this.  For a 26W compact fluorescent lamp can produce the lumen output of a 100W incandescent light bulb.  A one-to-one tradeoff on lighting output.  At a quarter of the power consumption.  And producing less heat due to creating light from fluorescence instead of incandescence.  Making fluorescent lighting the lighting of choice in commercial, professional and institutional buildings.  And any other air conditioned space with large lighting loads.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Neutrons, Electrons, Electric Current, Nuclear Power, Nuclear Chain Reaction, Residual Decay Heat and Pressurized Water Reactor

Posted by PITHOCRATES - July 18th, 2012

Technology 101

We create about Half of our Electric Power by Burning Coal to Boil Water into Steam

An atom consists of a nucleus made up of protons and neutrons.  And electrons orbiting around the nucleus.  Protons have a positive charge.  Electrons have a negative charge.  Neutrons have a neutral charge.  In chemistry and electricity the electrons are key.  When different atoms come together they form chemical bonds.  By sharing some of those electrons orbiting their nuclei.  In metals free electrons roam around the metal lattice of the crystalline solid they’re in.  If we apply a voltage across this metal these free electrons begin to flow.  Creating an electric current.  The greater the voltage the greater the current.  And the greater the work it can do.  It can power a television set.  Keep your food from spoiling in a refrigerator.  Even make your summers comfortable by running your air conditioner. 

We use electric power to do work for us.  Power is the product of voltage and current.  The higher each is the more work this power can do for us.  In a direct current (DC) system the free electrons have to make a complete path from the power source (an electric generator) through the wiring to the work load and back again to the power source.  But generating the power at the voltage of the workload required high currents.  Thick wires.  And a lot of power plants because you could only make wires so thick before they were too heavy to work with.  Alternating current (AC) solved this problem.  By using transformers at each end of the distribution path to step up and then step down the voltage.  Allowing us to transmit lower currents at higher voltages which required thinner wires.  And AC didn’t need to return to the power plant.  It was more like a steam locomotive that converted the back and forth motion of the steam engine into rotational power.  AC power plants generated a back and forth current in the wires.  And electrical loads are able to take this back and forth motion and convert it into useful electrical power.

Even though AC power allows us to transmit lower currents we still need to move a lot of these free electrons.  And we do this with massive electric generators.  Where another power source spins these generators.  This generator spins an electric field through another set of windings to induce an electrical current.  Sort of how transformers work.  This electrical current goes out to the switchyard.  And on to our homes.  Simple, really.  The difficult part is creating that rotational motion to spin the generator.  We create about half of our electric power by burning coal to boil water into steam.  This steam expands against the vanes of a steam turbine causing it to spin.  But that’s not the only heat engine we use to make steam.

To Shut Down a Nuclear Reactor takes the Full Insertion of the Control Rods and Continuously Pumping Cooling Water through the Core

We use another part of the atom to generate heat.  Which boils water into steam.  That we use to spin a steam turbine.  The neutron.  Nuclear power plants use uranium for fuel.  It is the heaviest naturally occurring element.  The density of its nucleus determines an element’s weight.  The more protons and neutrons in it the heavier it is.  Without getting into too much physics we basically get heat when we bombard these heavy nuclei with neutrons.  When a nucleus splits apart it throws off a few spare neutrons which can split other nuclei.  And so on.  Creating a nuclear chain reaction.  It’s the actual splitting of these nuclei that generates heat.  And from there it’s just boiling water into steam to spin a steam turbine coupled to a generator.

Continuous atom splitting creates a lot of heat.  So much heat that it can melt down the core.  Which would be a bad thing.  So we move an array of neutron absorbers into and out of the core to control this chain reaction.  So in the core of a nuclear reactor we have uranium fuel pellets loaded into vertical fuel rods.  There are spaces in between these fuel rods for control rods (made out of carbon or boron) to move in and out of the core.  When we fully insert the control rods they will shut down the nuclear chain reaction by absorbing those free neutrons.  However there is a lot of residual heat (i.e., decay heat) that can cause the core to melt if we don’t remove it with continuous cooling water pumped through the core. 

So to shut down a nuclear reactor it takes both the full insertion of the control rods.  And continuously pumping cooling water through the core for days after shutting down the reactor.  Even spent fuel rods have to spend a decade or two in a spent fuel pool.  To dissipate this residual decay heat.  (This residual decay heat caused the trouble at Fukushima in Japan after their earthquake/tsunami.  The reactor survived the earthquake.  But the tsunami submerged the electrical gear that powered the cooling pumps.  Preventing them from cooling the core to remove this residual decay heat.  Leading to the partial core meltdowns.)

Nuclear Power is one of the most Reliable and Cleanest Sources of Power that leaves no Carbon Footprint

There is more than one nuclear reactor design.  But more than half in the U.S. are the Pressurized Water Reactor (PWR) type.  It’s also the kind they had at Three Mile Island.  Which saw America’s worst nuclear accident.  The PWR is the classic nuclear power plant that all people fear.  The tall hyperboloid cooling towers.  And the short cylindrical containment buildings with a dome on top housing the reactor.  The reactor itself is inside a humongous steel pressure vessel.  For pressure is key in a PWR.  The cooling water of the reactor is under very high pressure.  Keeping the water from boiling even though it reaches temperatures as high as 600 degrees Fahrenheit (water boils into steam at 212 degrees Fahrenheit under normal atmospheric pressure).  This is the primary loop.

The superheated water in the primary loop then flows through a heat exchanger.  Where it heats water in another loop of pumped water.  The secondary loop.  The hot water in the primary loop boils the water in the secondary loop into steam.  As it boils the water in the secondary loop it loses some of its own heat.  So it can return to the reactor core to remove more of its heat.  To prevent it from overheating.  The steam in the secondary loop drives the steam turbine.  The steam then flows from the turbine to a condenser and changes back into water.  The cooling water for the condenser is what goes to the cooling tower.  Making those scary looking cooling towers the least dangerous part of the power plant.

The PWR is one of the safest nuclear reactors.  The primary cooling loop is the only loop exposed to radiation.  The problem at Three Mile Island resulted from a stuck pressure relief valve.  That opened to vent high pressure during an event that caused the control rods to drop in and shut down the nuclear chain reaction.  So while they stopped the chain reaction the residual decay heat continued to cook the core.  But there was no feedback from the valve to the control room showing that it was still open after everyone thought it was closed.  So as cooling water entered the core it just boiled away.  Uncovering the core.  And causing part of it to melt.  Other problems with valves and gages did not identify this problem.  As some of the fuel melted it reacted with the steam producing hydrogen gas.  Fearing an explosion they vented some of this radioactive gas into the atmosphere.  But not much.  But it was enough to effectively shut down the U.S. nuclear power industry. 

A pity, really.  For if we had pursued nuclear power these past decades we may have found ways to make it safer.  Neither wind power nor solar power is a practical substitution for fossil-fuel generated electricity.  Yet we pour billions into these industries in hopes that we can advance them to a point when they can be more than a novelty.  But we have turned away from one of the most reliable and cleanest sources of power (when things work properly).  Using neutrons to move electrons.  Taking complete control of the atom to our make our lives better.  And to keep our environment clean.  And cool.  For there is no carbon footprint with nuclear power.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Fukushima Seafood is Safe to Eat Again after Nuclear Accident Following 2011 Earthquake and Tsunami

Posted by PITHOCRATES - June 30th, 2012

Week in Review

The March 11, 2011 earthquake did not hurt the nuclear reactors at Fukushima.  And that quake was so violent that it moved the earth on its axis.  But it didn’t damage those reactors.  It was the tsunami it threw up that did.  Flooding the electrical switchgear that powered the cooling pumps.  As well as the backup generators.  It was one of those failures that was so remote that the engineers never conceived of it.  And when it happened it caused the greatest nuclear power accident since the Chernobyl meltdown.  The fallout from this rare accident shut down the nuclear power industry in Japan.  And other parts of the world.  People trembled as they awaited the nuclear apocalypse.  But it wasn’t as bad as some feared (see Fukushima seafood on the market by AP, The West Australian, posted 6/26/2012 on Yahoo! News).

The first catch of seafood from Japan’s Fukushima coast since last year’s nuclear disaster is being sold after passing radiation tests.

The Fukushima Prefectural (state) fishing co-operative said only octopus and a marine snail known as whelk were going on sale Monday…

The association said the amount of radioactive cesium was so low it was not detectable.

Octopus and whelk were chosen for the first test shipment because they measured low in radiation. Flounder, sea bass and other fish from Fukushima cannot be sold yet because of radiation contamination.

Not bad for the worst nuclear accident since Chernobyl.  And as the hot summer approaches they’re starting up some of their reactors to meet the electrical demand.  This doesn’t mean that Fukushima is not without problems.  But life goes on.  Even after the worst nuclear accident since Chernobyl.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , ,

Silicon, Semiconductor, Electrons, Holes, PN Junction, Diode, LED, Photon, 7-Segment LED and Full-Color Flat Panel LED Displays

Posted by PITHOCRATES - May 30th, 2012

Technology 101

Applying a Voltage across a PN junction to Create a Forward Bias Pushes Electrons and Holes towards the Junction

There’s gold in them thar Hills.  And silicon in the valley.  California has been a fountain of wealth.  Much of which they built from two materials located on the periodic table.  Atomic number 79.  Gold.  Or ‘Au’ as it appears on the periodic table.  And atomic number 14.  Silicon.  Or ‘Si’ as it appears on the periodic table.  Both of these metals proved to be valuable.  One by its scarcity.  One by what we could do with it.  For it was anything but scarce.  Silicon is the second most common element behind only oxygen.  But this commonly found material proved to be a greater font of wealth for California.  For it fueled the semiconductor industry.  For when we doped it with impurities we produced negatively (N-type) and positively (P-type) charged material.  Bringing the N and the P together gave us the PN junction.  Giving us the diode, transistor and integrated circuit.

The miracle of semiconductors occurs at the atomic level.  Down to the electrons orbiting the atom’s nucleus.  The nucleus contains an equal number of positively charged protons and neutrally charged neutrons.  The number of protons gives us the atomic number.  Changing the number of neutrons gives us isotopes.  Radioactive material has more protons than neutrons.  Uranium-235 is an isotope.  The stuff that made the atomic bomb dropped on Hiroshima.  Electrons orbit the nucleus.  In discrete energy levels.  The orbits closest to the nucleus have the lowest energy levels.  The orbits father away from the nucleus have higher energy levels.  Most of these orbits are ‘full’ of electrons.  The outer electron shell when ‘full’ is inert.  An outer shell that isn’t ‘full’ or has extra electrons is active.  And can chemically react.  Forming molecules.  When chemicals come into contact with each other and form molecules it is these electrons in the outer orbits (or valence electrons) that move into and out of the orbits of the different chemicals.  That is, the different elements share these valence electrons.

This is what we do when we dope silicon with impurities.  We either remove electrons from the valence shell to create a net positive charge.  Or we add electrons to the valence shell to create a net negative charge.  Giving us P-type and N-type material.  At the PN junction the N-type material loses its excess electrons to the P-type material across the junction as the empty holes in the valence shell attract the excess electrons.  As electrons leave the valence shells in the N-type material they leave holes in the valence shell where they once were.  Or, in the world of electronics, as electrons flow one way holes flow the other.  When we apply a voltage across a PN junction to create a forward bias (negative voltage applied to N-type and positive voltage applied to P-type) we push electrons and holes towards the junction.  If the forward bias is great enough they will continue all the way through the junction and into the material on the far side.  Where electrons will combine with excess holes.  And holes will combine with excess electrons.  Creating an electric current.  If we apply a voltage to create a reverse bias we will pull electrons and holes away from the PN junction.  And there will be no electrical current. We call such a PN device a diode.  A very important and indispensible device in electronics.

Placing Seven LEDs into a Figure-Eight Pattern created the Seven-Segment LED

Now back to those discrete energy levels.  There is another useful property we get when electrons move between these energy levels.  Electrons absorb energy when they move to a higher energy level.  And emit energy when they move to a lower energy level.  We make use of this property in fluorescent lighting.  A charged plasma field in a fluorescent lamp excites a small amount of mercury in the lamp.  As electrons fall into lower orbits in the mercury atoms they release invisible short-wave ultraviolet radiation.  The phosphor coating on the inside of the lamp absorbs this radiation and fluoresces.  Creating visible light.  By using different materials, though, we could see the energy (a photon) emitted by an electron falling into a lower energy level.  We have been able to move the wavelength of this photon into the visible spectrum.  The first commercial application to convert these photons into visible light was a device that gave us a red light.  That device was that important and indispensible PN-junction.  The diode.  And the use of different materials other than silicon moved these photons into the visible spectrum.  Giving us the light-emitting diode.  Or LED.

The first LEDs were only red.  Then we developed other colors using different materials.  Shifting the wavelength of the photon through all colors of the visible spectrum.  Being low-power devices, though, the intensity of light emitted was limited.  So an LED required careful mechanical construction and optics.  To direct the light out of the material forming the PN junction.  With a reflector behind the junction.  And a lens above.  To aim and diffuse the light.  And to prevent it from reflecting back into the material where it may be dissipated as heat.  Early use of LEDs was for indicator lights.  The low power consumption meant little heat was generated as with an incandescent lamp.  Which worked well in the temperature sensitive computer world.  Placing 7 LEDs into a figure-eight pattern created the seven-segment LED display.  With a rectangular shaped piece of translucent plastic above each LED you could see a bar of light for each light emitting diode.  Creating a forward bias on certain bars in the seven-segment display created the numbers we saw on our first calculators and digital watches.

An LED could produce a similar radiation like in the fluorescent lamp.  Using that radiation to fluoresce a phosphor coating inside a lamp to produce white light.  Similar to the fluorescence lamp.  Only while using less power.  Mixing the emitted light from red, green and blue (RGB) LEDs also produced white light.  Further improvements allowed us to emit whiter and brighter lights.  Allowing brighter lamps that consumed less power than the compact fluorescent lamps which were energy saving alternatives to the incandescent lamps.  With the lower power consumption of LEDs creating less heat we expanded the lifespan of lighting sources made from LEDs.  Using them to increase the service life in lamps inconvenient to change.  Like in traffic signal lights over busy intersections.  To the taillights in tractor trailers.  Where anytime spent not hauling freight was lost revenue.

We made Full-Color Flat Panel Displays from LEDs by combining Red, Green and Blue LEDs into Full-Color Pixel Clusters

The market didn’t demand these developments in semiconductors or LEDs.  For the most part the market didn’t even know this technology existed.  But the entrepreneurs gathering in Silicon Valley did.  They had some great ideas of what they could do with this new technology.  All they needed was the capital to bring these ideas to market.  It was risky.  The technology was good.  But could they use it to make useful things at affordable prices?  And would the people be so enamored with the things they built that they would buy them?  There were just too many unknowns for conservative bankers to take a risk.  But thanks to venture capitalists those entrepreneurs got the capital they needed.  Brought their ideas to market.  Created Silicon Valley.  And the modern world we now take for granted.

They continue to advance this technology.  Creating full-color flat panel displays.  By combining red, green and blue LEDs into full-color pixel clusters.  Which, unlike an LCD flat panel display, does not need a backlight as they produce their own light.  So these panels are thinner and use less power than LCD displays.  Making them ideal for the displays in our cellular devices for they allow more battery life between charges.  They also have wide viewing angles.  People looking at these displays from near perpendicular viewing angles see nearly the same quality of picture as those viewing directly in front.  Making them ideal for use in stadiums.  The video replays you see on that mammoth flat panel display in the new Dallas Cowboy stadium is an LED flat panel display.

All of this from joining two differently-charged semiconductor materials together.  Creating that all important and indispensible PN junction.  The foundation for every electronic device.  And of Silicon Valley itself.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Fire, Oil Lamp, Candle, Wicks, Gas Lights, Incandescence, Incandescent Light Bulb, Fluorescence and Compact Fluorescent Lamp

Posted by PITHOCRATES - March 28th, 2012

Technology 101

A Lit Match heats the Fuel Absorbed into a Wick, Vaporizes it, Mixes it with Oxygen and Ignites It 

Fire changed the world.  From when Homo erectus first captured it.  Around 600,000 BC.  In China.  They saw it.  Maybe following a lightning strike.  Seeing it around volcanic activity.  Perhaps a burning natural gas vent.  Whatever.  They saw fire.  Approached it.  And learned not to fear it.  How to add fuel to it.  To transfer it to another fuel source.  To carry it.  They couldn’t create fire.  But they could manage it.  And use it.  It was warm.  And bright.  So they brought it indoors.  To light up their caves.  Scare the predators out.  To use it to heat.  And to cook.  Taking a giant leap forward for mankind.

When man moved into man-made dwellings they brought fire with them.  At first a one-room structure with a fire in the center of it.  And a hole in the roof above it.  Where everyone gathered around to eat.  Stay warm.  Sleep.  Even to make babies.  As there wasn’t a lot of modesty back then.  Not that anyone complained much.  What was a little romance next to you when you were living in a room full of smoke, soot and ash?  Fireplaces and chimneys changed all that.  Back to back fireplaces could share a chimney.  Providing more heat and light.  Less smoke and ash.  And a little privacy.  Where the family could be in one room eating, staying warm, reading, playing games and sleeping.  While the grownups could make babies in the other room.

As we advanced so did our literacy.  After a hard day’s work we went inside.  After the sun set.  To read.  Write letters.  Do some paperwork for the business.  Write an opera.  Whatever.  Even during the summer time.  When it was warm.  And we didn’t have a large fire burning in the fireplace.  But we could still see to read and write.  Thanks to candles.  And oil lamps.  One using a liquid fuel.  One using a solid fuel.  But they both operate basically the same.  The wick draws liquid (or liquefied) fuel via capillary action.  Where a porous substance placed into contact with a liquid will absorb that liquid.  Like a paper towel or a sponge.  When you place a lit match into contact with the wick it heats the fuel absorbed into the wick and vaporizes it.  Mixing it with the oxygen in the air.  And ignites it.  Creating a flame.  The candle works the same way only starting with a solid fuel.  The match melts the top of this fuel and liquefies it.  Then it works the same way as an oil lamp.  With the heat of the flame melting the solid fuel to continue the process. 

Placing a Mantle over a Flame created Light through Incandescence (when a Heated Object emits Visible Light)

Two popular oils were olive oil and whale oil.  Beeswax and tallow were common solid fuels.  Candles set the standard for noting lighting intensity.  One candle flame produced one candlepower.  Or ‘candela’ as we refer to it now.   (Which equals about 13 lumens – the amount of light emitted by a source).  If you placed multiple candles into a candelabrum you could increase the lighting intensity.  Three candles gave you 3 candela of light to read or write by.  A chandelier with numerous candles suspended from the ceiling could illuminate a room.  This artificial light shortened the nights.  And increased the working day.  In the 19th century John D. Rockefeller gave the world a new fuel for their oil lamps.  Kerosene.  Refined from petroleum oil.  And saved the whales.  By providing a more plentiful fuel.  At cheaper prices.

By shortening the nights we also made our streets safer.  Some cities passed laws for people living on streets to hang a lamp or two outside.  To light up the street.  Which did indeed help make the streets brighter.  And safer.  To improve on this street lighting idea required a new fuel.  Something in a gas form.  Something that you could pump into a piping system and route to the new street lamps.  A gas kept under a slight pressure so that it would flow up the lamp post.  Where you opened the gas spigot at night.  And lit the gas.  And the lamp glowed until you turned off the gas spigot in the morning.  Another advantage of gas lighting was it didn’t need wicks.  Just a nozzle for the gas to come out of where you could light it.  So there was no need to refuel or to replace the wicks.  Thus allowing them to stay lit for long periods with minimum maintenance.  We later put a mantle over the flame.  And used the flame to heat the mantle which then glowed bright white.  A mantle is like a little bag that fits over the flame made out of a heat resistant fabric.  Infused into the fabric are things that glow white when heated.  Rare-earth metallic salts.  Which change into solid oxides when heated to incandescence (when a heated object emits visible light).

One of the first gases we used was coal-gas.  Discovered in coal mines.  And then produced outside of a coal mine from mined coal.  It worked great.  But when it burned it emitted carbon.  Like all these open flames did.  Which is a bit of a drawback for indoor use.  Filling your house up with smoke.  And soot.  Not to mention that other thing.  Filling up your house with open flames.  Which can be very dangerous indoors.  So we enclosed some of these flames.  Placing them in a glass chimney.  Or glass boxes.  As in street lighting.  Enclosing the flame completely (but with enough venting to sustain the flame) to prevent the rain form putting it out.  This glass, though, blackened from all that carbon and soot.  Adding additional maintenance.  But at least they were safer.   And less of a fire hazard.  Well, at least less of one type of fire hazard.  From the flame.  But there was another hazard.  We were piping gas everywhere.  Outside.  Into buildings.  Even into our homes.  Where it wasn’t uncommon for this gas to go boom.  Particularly dangerous were theatres.  Where they turned on the gas.  And then went to each gas nozzle with an open fire on a stick to light them.  And if they didn’t move quickly enough the theatre filled with a lot of gas.  An enclosed space filled with a lot of gas with someone walking around with an open fire on a stick.  Never a good thing.

Fluorescent Lighting is the Lighting of Choice in Commercial, Professional and Institutional Buildings 

Thomas Edison fixed all of these problems.  By finding another way to produce incandescence. By running an electrical current through a filament inside a sealed bulb.  The current heated the filament to incandescence.  Creating a lot of heat.  And some visible light.  First filaments were carbon based.  Then tungsten became the filament of choice.  Because they lasted longer.  At first the bulbs contained a vacuum.  But they found later that a noble gas prevented the blackening of the bulb.  The incandescent light bulb ended the era of gas lighting.  For it was safer.  Required less maintenance.  And was much easier to operate.  All you had to do was flick a switch.  As amazing as the incandescent light bulb was it had one big drawback.  Especially when we use a lot of them indoors.  That heat.  As the filament produced far more heat than light.  Which made hot buildings hotter.  And made air conditioners work harder getting that heat out of the building.  Enter the fluorescent lamp.

If phosphor absorbs invisible short-wave ultraviolet radiation it will fluoresce.  And emit long-wave visible light.  But not through incandescence.  But by luminescence.  Instead of using heat to produce light this process uses cooler electromagnetic radiation.  Which forms the basis of the fluorescent lamp.  A gas-discharge lamp.  The most common being the 4-foot tube you see in office buildings.  This tube has an electrode at each end.  Contains a noble gas (outer shell of valence electrons are full and not chemically reactive or electrically conductive) at a low pressure.  And a little bit of mercury.  When we turn on the lamp we create an electric field between the electrodes.  As it grows in intensity it eventually pulls electrons out of their valence shell ionizing the gas into an electrically conductive plasma.  This creates an arc between the electrodes.  This charged plasma field excites the mercury.  Which produces the invisible short-wave ultraviolet radiation that the phosphor absorbs.  Causing fluorescence.

One candle produces about 13 lumens of light.  Barely enough to read and write by.  Whereas a 100W incandescent light bulb produces about 1,600 lumens.  The equivalent of 123 candles.  In other words, one incandescent lamp produces the same amount of light as a 123-candle chandelier.  Without the smoke, soot or fire hazard.  And the compact fluorescent lamp improves on this.  For a 26W compact fluorescent lamp can produce the lumen output of a 100W incandescent light bulb.  A one-to-one tradeoff on lighting output.  At a quarter of the power consumption.  And producing less heat due to creating light from fluorescence instead of incandescence.  Making fluorescent lighting the lighting of choice in commercial, professional and institutional buildings.  And any other air conditioned space with large lighting loads. 

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Fukushima now Stable 9 months after Earthquake/Tsunami, Still no Chernobyl

Posted by PITHOCRATES - December 17th, 2011

Week in Review

The Fukushima disaster was bad.  But it wasn’t Chernobyl bad.  And it doesn’t appear it’s going to get Chernobyl bad.  No doubt to the dismay of antinuclear environmentalists everywhere (see Japan to declare ‘cold shut-down’ at Fukushima posted 12/16/2011 on BBC News Asia).

An earthquake and tsunami in March knocked out vital cooling systems, triggering radiation leaks and forcing the evacuation of thousands of people.

Mr Noda’s declaration of a “cold shutdown” condition marked the stabilisation of the plant.

The government says it will take decades to dismantle it completely.

It took about 9 months to make these reactor cores stable.  And there has been some radiation released here and there.  But nothing like in the Ukraine when Chernobyl blew up and wafted it’s radioactive debris across Europe.  Remember, Chernobyl was the result of an exercise gone wrong.  Human error.  Fukushima was hammered with first an earthquake.  Which it withstood.  Then a tsunami.  Which it withstood, too.  Unfortunately, the electrical switchgear that powered its cooling pumps became submerged in salt water.  Something that doesn’t mix well with electricity.  And the cooling pumps failed.  Then the reactors overheated.

As bad as a nuclear accident is there must be a lot of people who thought that if we must have one at least it happened in Japan.  And, no, not because anyone wishes the Japanese any ill will.  Fukushima has been out of the news for half a year or so.  And yet they only stabilized it now.  Which means that for 6 months or so few have paid attention to the worst nuclear accident since Chernobyl.  Tells you a lot about the Japanese.  No one doubted that they would take care of this problem.  For they have an in-depth understanding of the technology they use.  And can respond to any accident that their engineering let’s pass.

Can you imagine if this happened in Iran?

www.PITHOCRATES.com

Share

Tags: , , , , , , , ,