A Third Tesla Model S is Consumed by Flames from their Lithium-Ion Batteries

Posted by PITHOCRATES - November 9th, 2013

Week in Review

There were two Boeing 787 Dreamliners that had a battery problem and a burning smell.  Fire is dangerous.  Especially in an airplane.  There was no loss of life in either incident.  And there was minor damage.  But two incidents were enough for the FAA to ground the entire Boeing 787 Dreamliner fleet.  Yes, fire is dangerous on an airplane.  But the government was also mad at Boeing for wanting to make the Dreamliner with nonunion labor.  Did this play a role in the grounding?  Who knows?

Tesla has now had three lithium-ion fires.  Not battery problems with a burning smell.  The federal government likes Tesla.  Wants everyone to drive an electric car.  And subsidizes the electric car industry.  Interestingly how Tesla can have three fires that destroy the car entirely and yet receive no scrutiny from the National Highway Traffic Safety Administration.  Guess the government thinks Boeing wants to put people on unsafe airplanes while Tesla doesn’t want to put people in unsafe cars (see Tesla reports third fire involving Model S electric car by Ben Klayman and Bernie Woodall, Reuters, posted 11/8/2013 on The Globe and Mail).

Tesla Motors Inc. reported the third fire in its Model S luxury electric car in six weeks, this time after a highway accident in Tennessee, sending shares down sharply on Thursday.

The Tennessee Highway Patrol said the 2013 model sedan ran over a tow hitch that hit the undercarriage of the vehicle, causing an electrical fire on Interstate 24 on Wednesday. A highway patrol dispatcher called the damage to the car “extensive.”

The Model S undercarriage has armour plating that protects a battery pack of lithium-ion cells. Tesla said it did not yet know whether the fire involved the car’s battery.

An electrical fire in an electric car probably involved the car’s battery.  For without gasoline and a source for ignition what else can burn in an electric car other than a high energy density device under heat and pressure?

The first Model S fire occurred on Oct. 1 near Seattle, when the car collided with a large piece of metal debris in the road that punched a hole through the protective armour plating…

The second fire took place later in the month in Merida, Mexico, when, according to reports, a car drove through a roundabout, crashed through a concrete wall and hit a tree…

While none of the drivers in any of the Tesla accidents were injured, the glaring headlines about fires were unwelcome for a company whose stock soared sixfold in the first nine months of the year. Since the first fire, Tesla’s shares have lost more than 27 per cent, and this week’s declines are the worst one-week drop since May, 2012.

“For a company with a stock price based as much or more on image than financials, those recurring headlines are highly damaging,” Kelley Blue Book senior analyst Karl Brauer said.

When image is more important than financials that means the electric car isn’t selling.  That the costs far exceed revenue.  And probably the only things allowing them to stay in business are government subsidies (both for Tesla and for Tesla buyers) and irrational exuberance.  Like when investors created a dot-com bubble in the late Nineties.  Bidding up stock prices into the stratosphere when companies had nothing to sell let alone profits.  At least in the dot-com bubble investors were betting that they found the next Microsoft and were going to get rich.  It’s a little more puzzling why investors are buying Tesla stock in the first place. 

Tesla may build the best electric cars in the world.  But they are still electric cars.  The problem is no one is buying electric cars.  Except rich people who can afford a third car.  With the other two being powered by gasoline.  In case they want to travel a long distance.  Or drive at night or in the cold with the lights and heat on.  Or have to rush a sick child to the hospital when the Tesla is on the charger.

Tesla’s battery pack is made up of small lithium-ion battery cells that are also used in laptop computers, an approach not used by other auto makers. The battery pack stretches across the base of the vehicle. In comparison, General Motors Co. uses large-format battery cells in a T-shape in the centre of the Chevrolet Volt plug-in hybrid car.

Other auto makers have dealt with battery fires in electrified vehicles, including GM’s Volt and Mitsubishi Motors Corp.’s i-MiEV…

“For consumers concerned about fire risk, there should be absolutely zero doubt that it is safer to power a car with a battery” than a conventional gas-powered vehicle, he said on a blog post.

Company executives called that first fire a “highly uncommon occurrence,” likely caused by a curved metal object falling off a semi-trailer and striking up into the underside of the car in a “pole-vault effect.”

Gasoline engines are dangerous, but Americans have learned to live with them over the years, said Tom Gage, the former CEO of AC Propulsion, which developed the drive train for Tesla’s first model, the Roadster.

“Obviously, gasoline can be lit more easily and can burn with more ferocity than a battery can, but a gas tank in a car now benefits from 120 years of fairly intensive development and government regulation regarding how you make it safe,” he said.

Ever smell gasoline?  In a parking lot?  When you shouldn’t?  It might have been more common in the old days.  When the Big Three were selling their rust buckets.  Which rusted out in the northern climates where they salt the roads during winter.  Salt makes metal rust.  Including gas tanks.  Causing leaks.  If you smelled gas, though, did you run away from that car and wait for it to explode?  No.  You didn’t.  You probably thought something along the lines of, “That guy should get that fixed.  Gasoline is too expensive to waste like that.”

And you can fix a leaky gas tank.  It’s dangerous but you can.  For a tank full of gas has more liquid than fumes in it.  But an empty gas tank may be full of lingering gas fumes.  That can explode if ignited with a welding torch.  Which is why before they weld a gas tank they fill it full of sand.  So there is no room for any explosive gas vapors.

Gasoline is flammable.  It will burn.  But it won’t explode.  For gasoline in a liquid form is not as dangerous as in other forms.  It can leak out of a gas tank.  And then evaporate into the atmosphere.  In a car wreck something can puncture the gas tank and cause fuel to spill out.  If this fuel is ignited it can burn.  And the fire will follow the gasoline back to the source.  If the fire reaches the gasoline fumes under pressure in the gas tank there can be an explosion.  A very big one at that.  But if the fire department is on the scene they can wash that gasoline away with a fire hose.  And prevent any fire or explosion.  When a lithium-ion battery burns, though, throwing water on it won’t do much.

For gasoline to power a gasoline-powered car we first have to vaporize it.  Mix it with oxygen (pulled from the air).  Compress the air-fuel mixture.  And then ignite it with a spark.  That’s when it’s dangerous.  When it’s inside our engines.  Not in the gas tank.  For a piece of metal can puncture the bottom of a car—including the gas tank—without causing a fire.  Whereas it’s a little iffy with a Tesla.  If something punctures the batteries covering the bottom of the car there’s a good chance there may be a fire.  While if you puncture a gas tank you may just run out of gas.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , ,

Electric Car Builder Tesla increases Battery Order by 900%

Posted by PITHOCRATES - November 2nd, 2013

Week in Review

Say’s law states that supply creates its own demand.  Think of some of the greatest inventions in our life and you’ll see that Say’s law is true.  Today’s kitchens aren’t complete without a microwave oven.  Yet we didn’t demand a microwave oven.  Because we had no idea what it was until someone created it.  And told us how wonderful it was.  Then we started buying them.  The supply of microwaves came first.  The demand then followed.  Hence, supply created its own demand.  Just like Say’s law states.  You know who else believes in Say’s law?  Elon Musk.  The guy who founded PayPal.  SpaceX.  And Tesla Motors (see Tesla boosts battery order from Panasonic by Reuters posted 10/30/2013 on The Globe and Mail).

Tesla Motors Inc. will sharply increase the number of lithium ion battery cells it receives from Japan’s Panasonic Corp, in a deal that underscores the U.S. car maker’s confidence in the future of all-electric cars.

Electronics maker Panasonic, already Tesla’s primary supplier of lithium-ion batteries, will provide nearly 2 billion lithium ion cells to the car maker in the four years to 2017, the two companies said on Wednesday.

That is a big step-up from the 200 million cells Panasonic is expected to have supplied to Tesla in the two years ending this December.

The deal shows Tesla’s faith in its models despite slower-than-expected global sales of electric vehicles.

Going from 200 million to 2 billion?  That’s an increase of 900%.  It’s one thing to have faith and believe in your product.  Believing that your supply will create demand.  But there is another economic concept that may be pertinent here.  One from the Austrian school of economics.  Malinvestment.  Taking advantage of cheap capital and government subsidies to make bad investments.  Hence malinvestments.  For it is unlikely that any business is going to see a 900% sales growth in the coming year let alone the narrow niche market of electric cars.  Even Jean-Baptiste Say himself would probably say that’s some pretty wishful thinking that a 900% increase in supply will generate a corresponding demand.

www.PITHOCRATES.com

Share

Tags: , , , , , , , ,

The Lithium-Ion Battery still not Ready to Power a Practical All-Electric Car

Posted by PITHOCRATES - April 14th, 2013

Week in Review

If you’ve been waiting with bated breath for the all-electric car with a real useful range you can start breathing again.  For the one technology that promised the most is having a setback.  Because of its propensity to burst into flames (see FAA sees lessons from Boeing 787 battery woes by Andrea Shalal-Esa posted 4/13/2013 on Reuters).

Lightweight and power-packed, lithium-ion batteries are used to power electric cars, laptops, tablets, cell phones, satellites. They are even used on the Lockheed Martin Corp F-35 fighter jet. The number of cells manufactured globally has leapt to 4.4 billion in 2012 from 800 million in 2002.

But safety remains an issue. The battery industry still does not have a foolproof way to predict or prevent internal short circuits in the cells, according to experts who spoke about the issue this week at the National Transportation Safety Board forum…

In the Cessna case, the FAA required that lithium-ion batteries in the Cessna Citation Model 525C, be replaced with nickel-cadmium or lead-acid batteries, older technologies that are not as volatile. Airbus officials have said they think lithium-ion batteries can eventually be made safe, but that the company was shifting to nickel-cadmium for its forthcoming A350 jet, because it doesn’t want to risk a delay in bringing the plane to market.

If you’re buying a replacement lithium-ion battery don’t try to save a buck.  Just bite the bullet and buy the brand the manufacturer recommends.  So it doesn’t burst into flames.

If these are not safe to go onto airplanes without some extraordinary precautions just imagine that all-electric car you plug in overnight in your attached garage.  There have been a couple of garage fires.  Not many.  But that’s probably more to do with the fact no one is buying these all-electric cars.   Why are these so dangerous?  Because they contain a lot of energy in a very small package.  Sort of like our early steam engines where a lot of steam pressure was in a very small package.  And when something didn’t go right like a pressure relief valve sticking they blew up in a massive explosion.

This is the risk when you try to get a lot of energy out of small packages.  They can do a lot of work for us.  But if something goes wrong something really bad can happen.  And until we can get past this point in the development of the lithium-ion battery we won’t have a practical all-electric car any time soon.

www.PITHOCRATES.com

Share

Tags: , ,

Lithium Ion Battery Fires ground entire Boeing 787 Dreamliner Fleet

Posted by PITHOCRATES - January 20th, 2013

Week in Review

The big drawback for electric cars is range.  For after a battery powers all the electrical systems (heating, cooling, lights, etc.) what charge is left is for going places.  And if that place is more than 30 miles away few people will feel comfortable taking a chance that they will have enough charge to drive there and back.  Unless that trip is to work where the car can recharge for 8-9 hours while at work.

Range anxiety is the greatest drawback to an all-electric car.  For if you run out of charge there is only one way to get your car home.  With a tow truck.  For you can’t walk to a gas station and ask for a can of charge to pour into the battery.  Charging needs an electrical source.  And time.  So the Holy Grail of the all-electric car industry is a battery that can hold a lot of charge.  But is small and does not weigh a lot.  And can be recharged in a very short time.  Right now that Holy Grail is the lithium ion battery.

But there is a cost for this Holy Grail.  There is a lot of chemistry to do this.  Chemistry that can produce a lot of heat.  Catch fire.  And explode.  Which has happened in some electric cars.  As well as in some airplanes (see Bad Batteries Seen as Best Case for 787 Overcoming Past by Susanna Ray, Alan Levin & Peter Robison posted 1/18/2013 on Bloomberg).

Other aircraft bleed air off the engines for a pneumatic system to power a variety of critical functions, such as air conditioning. That diverts power from the engines that they could otherwise use for thrust, and means they use more fuel.

With an electrical system for the jet’s other needs, the engines become much more efficient. The 787 uses five times as much electricity as the 767, enough to power 400 homes. To jump- start a so-called auxiliary power unit that’s used on the ground and as a backup in case all the plane’s generators failed, Boeing decided on a lithium-ion battery because it holds more energy and can be quickly recharged, Mike Sinnett, the 787 project engineer, said in a briefing last week.

Those capabilities also make lithium-ion cells more flammable than other battery technology, and they can create sparks and high heat if not properly discharged. Chemicals inside the battery are also flammable and hard to extinguish because they contain their own source of oxygen, Sinnett said.

A couple of battery fires have grounded all Boeing 787 Dreamliners.  The last commercial jetliner to receive such an order was the McDonnell Douglas DC-10.   Which happened after an engine came off while taking off at O’Hare International Airport in Chicago.  Due to a maintenance error in changing out the left engine and pylon.  Causing the plane to crash.  After investigation they found the slats did not mechanically latch into position.  When the engine ripped out the hydraulic lines the slats retracted and the wing stalled.  The plane slowly banked to the left and fell out of the sky.  Killing all on board.  The DC-10s were grounded worldwide until the hydraulic lines were better protected and the slats latched to prevent them from retracting on the loss of hydraulic pressure.  Now no 787s have crashed.  But few things are deadlier to an airborne aircraft than a fire.  For there is nothing pilots can do other than to continue to fly towards an airport while the plane is consumed by fire.

Stored chemical oxygen generators in the hull of ValuJet Flight 592 were stored improperly.  They were activated.  Producing oxygen by a chemical reaction that generated a lot of heat.  The heat started a fire and the oxygen fueled it.  Once the pilots were aware of the fire they turned to the nearest airport.  But the fire consumed the airplane and fell out of the sky before they could land.  Killing all on board.

Fire on an airplane rarely ends well.  Which explains the grounding of the entire 787 fleet.  Because these lithium ion batteries run very hot when they make electricity.  And they can generate oxygen.  Which is the last thing you want on an aircraft.  However, both Airbus and Boeing are using them because they are the Holy Grail of batteries.  They’re small and light and can hold a lot of charge and nothing can recharge as fast as they can.  Which is why they are the choice for all-electric cars.  Even though some of them have caught fire.  This is the tradeoff.  Smaller and lighter batteries are smaller and lighter for a reason.  Because of powerful chemical reactions that can go wrong.  So to be safe you should park your electric car outside and away from your house.  In case it catches fire you’ll only lose your car.  And not your garage or house.  Or you can stick to the gasoline-powered car and not worry about battery fires.  Or range.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , ,

Lead–Acid Battery, Nickel–Cadmium Battery (NiCd), Nickel–Metal Hydride Battery (NiMH) and Lithium-Ion Battery

Posted by PITHOCRATES - January 9th, 2013

Technology 101

The Chemical Reactions in a Zinc-Carbon Battery are One Way

A battery uses chemistry to make electricity.  An electric current is a flow of electrons that can do useful work.  The chemical reaction inside a battery creates that flow of electrons to produce an electric current.  In a common zinc-carbon battery, for example, a zinc electrode dissolves in an electrolyte.  As it does atoms release free electrons and become positive ions (cations) in the electrolyte.  Giving this solution a positive charge.  At the same time a carbon electrode is in a different electrolyte solution.  One filled with negative ions (anions).  Giving this solution a negative charge.

With no electrical load attached to the battery these electrodes and electrolytes are in equilibrium.  When we attach an external circuit across the battery terminals they provide a pathway for those free electrons.  As the free electrons travel through the external circuit the cations and anions travel through a porous membrane from one electrolyte to the other.  The positive cations (atoms with room for an additional electron) flow towards the carbon electrode.  And combine with the free electrons on the surface of the carbon electrode and become electrically neutral.

We can stop this chemical reaction.  Say by turning a flashlight or a portable radio off.  But we can’t reverse it.  This is a one-way chemical reaction that eventually dissolves away the anode.  A Zinc-carbon battery is inexpensive.  The amount of battery life we get out of it more than offsets the price.  And they’re easy to change.  But sometimes an application calls for a battery that isn’t easy to change.  Like a car battery.  Imagine having to change that a few times a year when it ran down.  No, that would be far too inconvenient.  Difficult.  And costly.  So we don’t.  Instead, we recharge car batteries.

The Chemical Reactions in a Lead-Acid Battery are Reversible allowing these batteries to be Recharged

A car battery is a lead-acid battery.  Each cell of a lead-acid battery has a positive electrode (i.e., plate) of lead dioxide.  A negative electrode of lead.  And an electrolyte of a sulfuric acid-water solution containing sulfate ions.  The lead chemically reacts with the sulfate ions to produce lead sulfate on the negative electrode while producing positive ions.  The lead dioxide chemically reacts with the sulfuric acid to produce lead sulfate on the positive electrode while giving up free electrons.

When we attach an external circuit to the battery (such as starting a car) the free electrons leave the positive electrode, travel through the external circuit and return to the battery.  Where they combine with those positive ions.  Lead sulfate forms on both electrodes.  These reactions consume the sulfuric acid in the electrolyte and leave mostly water behind.  Reducing the available charge in the battery.  But unlike zinc-carbon batteries these chemical reactions are reversible.  After a car starts, for example, the alternator provides the electric power needs of the car.  While applying a charging voltage to the battery.  This voltage will ionize the water in the battery which will break down the lead sulfate.  Deposit lead oxide back onto the positive electrode.  And deposit lead back onto the negative electrode.  Giving you a charged battery for the next time you need to start your engine.

A lead acid battery can provide a strong current to spin an internal combustion engine.  Which takes a lot of energy to fight the compression of the pistons.  And it can work in some very cold temperatures.  But it’s big and heavy.  And works best in things bigger and heavier.  Like cars.  Trucks.  Trains.  And ships.  But they don’t work well in things that are smaller and lighter.  Like cordless power tools.  Cell phones.  And laptop computers.  Things where battery weight is an important issue.  Requiring an alternative to the lead-acid battery.  One of the earliest rechargeable battery alternatives was the nickel–cadmium battery.  Or NiCad battery.

The Chemical Reactions produce Heat in a Lithium Ion Battery and can Catch Fire or Explode

The nickel–cadmium battery works like every other battery.  With chemical reactions that produce electrons.  And chemical reactions that consumes electrons.  The NiCad battery uses nickel (III) oxide-hydroxide for the positive electrode.  Cadmium for the negative electrode.  And potassium hydroxide as the electrolyte.  A NiCad battery may look like a zinc-carbon battery.  But the electrodes are different.  Instead of the zinc canister and a carbon rod the electrodes in a NiCad battery are long strips.  One is placed onto the other with a separator in between.  Then rolled up like a jelly-roll.

NiCad batteries have a memory effect.  If they were recharged without being fully discharged the battery ‘remembers’ the amount of charge it took to recharge the partially discharged battery.  So even if you fully discharged the battery it would only recharge it as if you partially discharged it.  Reducing the battery capacity over time.  The nickel–metal hydride battery (NiMH) eliminated this problem.  And improved on the NiCad.  Giving it 2-3 times the capacity of a NiCad battery.  NiCad and NiMH batteries are very similar.  They use the same positive electrode.  But instead of the highly toxic cadmium NiMH batteries use a mixture of a rare earth metal mixed with another metal.

Today battery technology has evolved into the lithium-ion battery.  Where the positive electrode is a compound containing lithium.  The negative electrode is typically graphite.  The electrolyte is a lithium salt.  Lithium ions travel between the electrodes through the electrolyte.  And electrons flow between the electrodes via the external circuit.  They have a greater capacity, no memory effect and hold their charge for a long time when not being used.  Making the lithium ion battery ideal for cell phones and other consumer electronics.  These chemical reactions produce heat, though.  And can catch fire or explode.  Trying to prevent this from happening increases their manufacturing costs, making them expensive batteries.  So expensive that people will buy cheaper generic brands.  Cheaper because they are not built to the same quality standards of the more expensive ones.  And are more prone to catching fire or exploding.

Something to think about when you feel the heat of your cell phone after a long conversation.  Only use a battery recommended by the manufacturer.  Even if it costs a small fortune.  It may be expensive.  But probably not as expensive as your monthly airtime charges.  So don’t skimp when it comes to lithium ion batteries.  For those cheap ones do have a tendency to catch fire.  Or explode.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,