Prevailing Winds, Channel Markers, Buoys, Portage, Canals, Locks, Niagara Falls and the Welland Canal

Posted by PITHOCRATES - January 30th, 2013

Technology 101

The Lateen-Rigged Sail allows Ships to Maneuver onto the Prevailing Winds Superhighways

Oceans are deep.  Allowing ships to cross them without fear of striking bottom.  Which helped the age of sail.  As sailors could use the prevailing winds to fill large masts of square-rigged sails to blow them across oceans.  Sailing to the New World with the trade winds (near the equator) and polar easterlies (near the poles) filling their sails.  And sailing from the New World with the westerlies (in the middle latitudes in both hemispheres) filling their sails.  The deep oceans let these sailing vessels move unrestricted to find the best wind.

That is, once these sailing vessels got to the proper latitude.  Getting there they had to use another kind of sail.  A lateen-rigged sail.  A triangular sail with a leading edge that cut into the wind.  Splitting the wind so part of it filled the sail.  The sail blew out and redirected the wind to the stern of the ship.  While the wind passing over the top of the curved sail created lift.  Like on an aircraft wing.  Pulling the ship forward.  This allows a wind blowing in from the side of a ship to propel it forward.  Which allows a sailing vessel to sail into the wind.  By sailing in a zigzag path.  Or beating.  After sailing in one direction they come about.  Or tack.  Turning the bow through the wind so it blows in from the other side of the ship.

The wide open and deep oceans let these sailing vessels maneuver at will to catch the wind.  Propelling them forward at speed.  Without fear of grounding out on the bottom.  Taking them to the great superhighways across the oceans.  To the trade winds and polar easterlies to sail west.  And to the westerlies to sail east.  Where these winds could fill multiple squared-rigged sails on a single mast.  On ships with multiple masts.  Allowing them to catch a lot of wind.  And to drive them forward to their destination.

Channel Markers and Buoys are Color-Coded telling Ship Captains ‘Red Right Returning’

Of course it’s these destinations that really matter.  For sailing around in the middle of the ocean is worthless unless you can load and unload cargo somewhere.  Getting to these ports was a little trickier.  Because it required sailing closer to land.  Where the ocean floor rises up quickly from great depths.  Making sailing near shores hazardous.  As hidden shoals and reefs hide just below the surface.  Threatening to cut a deep gash in a ship’s hull.  Or a ship could run aground in the shallows.  Where they may have to wait for a rising tide to free them.  All the while risking being damaged by any storm that blew in.

The first sailors who arrived in the New World had no navigational aids like we do today.  Often having to rely on the experience of a grizzled captain who could see and smell dangers in the water.  Or they dropped anchor away from the shore and explored the coast in smaller boats to sound out sea approaches to a deep-water harbor.  As time passed lighthouses dotted the shoreline.  And other navigational aids guided ship captains.  To warn them of dangerous waters.  And show safe channels to navigate.    Channel markers and buoys are color-coded.  With paint for day navigation.  And lights for night navigation.  In the New World (and Japan, South Korea and the Philippines) the colors are red and green.  When entering a harbor or river from the sea the red is kept on the right of a ship.  Mariners learn this with the memory device ‘red right returning’.

When the French sailed up the Saint Lawrence River they founded the oldest walled-city in North America.  Quebec City.  They then sailed as far upstream as they could.  Founding the city of Montreal.  Going beyond Montreal required portaging around the rapids at Montreal.  And a few others until they got to Lake Ontario.  Where they could re-embark ships and sail across Lake Ontario and into the Niagara River.  Where they had to portage around the rapids.  And Niagara Falls.  Where they once again could re-embark ships and enter Lake Erie.  Then sail up the Detroit River.  Across Lake St. Clair.  Up the St. Clair River.  And into Lake Huron.  Where they could sail through the Straits of Mackinac and into Lake Michigan.  Or up the St. Marys River.  Where they could portage around the rapids in the St. Marys River.  Reentering the river upstream of the rapids to let them sail into Lake Superior.  Where they could sail all the way to Minnesota.  And take on iron ore.  Mined from the great iron ore deposits beyond Lake Superior.  To feed the blast furnaces of America’s steel industry.

A Lock consists of a Chamber with Watertight Gates at each end and some Valves

Of course, iron ore is heavy.  As is a lot of the bulk freight shipping on the Great Lakes.  Making those portages around rapids and falls difficult and costly.  They needed to find a better way.  And they have.  Which is why Great Lakes freighters can travel from the western end of Lake Superior to the Saint Lawrence River.  And ocean-going freighters can enter the Saint Lawrence River and travel to the western end of Lake Superior.  Without a single portage.  Thanks to canals.  And locks.

A canal provides a passage around rapids or falls.  And locks in the canal can raise or lower a ship to the water level at either side of the rapids or falls.  Getting around the rapids between Montreal and Lake Ontario and in the St. Marys River didn’t require long canals.  Just enough to provide a passage around the rapids.  The Niagara River posed a bigger problem.  For there were both rapids.  And Niagara Falls.  As well as a great change in water levels.  The level in Lake Erie is 326.5 feet above the level in Lake Ontario.  As the typical lock doesn’t raise and lower water 326.5 feet one lock just wasn’t a solution.  So they used 8 (7 for raising and lowering ships and the 8th as a control lock).   And dug a canal across the Niagara peninsula.   The Welland Canal.  From Port Weller on Lake Ontario to Port Colborne on Lake Erie.  Interconnected by 26 miles of canal.  Allowing fully loaded bulk freighters to travel between Lakes Erie and Ontario.  And ocean-going freighters to travel from the Atlantic ocean (and the world beyond) to the western end of Lake Superior.

So how does a lock work?  Are there massive pumps to pump in water to raise a ship?  No.  There are no pumps.  Just a couple of valves.  A lock consists of a chamber with watertight gates at each end.  The gates swing open towards the upstream side.  When they close they form an 18-degree angle that points upstream.  So when the water level is higher on the upstream side the force of the water presses the gates closed and makes a watertight seal.  When the water level is equal on both sides of the gate they can easily open the gates.  When a ship enters a lock both gates seal.  If they are lowering a ship they open valves between the chamber and the canal on the downstream side.  The high water level inside the chamber drains until the water levels equalize.  If they are raising a ship they open valves between the chamber and the canal on the upstream side.  Water from the canal enters the chamber until the water levels equalize.  Then the appropriate gate opens and the ship goes on its way.  A very simple and low-tech process.  Allowing ships with deep drafts to travel the oceans.  Rivers.  And inland lakes.  Thanks to navigational aids.  Canals.  And locks.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , ,