Aviation Incidents and Accidents

Posted by PITHOCRATES - March 12th, 2014

Technology 101

The Pilots of Aloha Airlines Flight 243 landed Safely after Fatigue Cracks caused Part of the Cabin to Disintegrate

The de Havilland Company introduced the jet airliner to the world.  The Comet.  A 4-engine jet airliner with a pressurized cabin that could carry 36 passengers.  It could fly at 40,000 feet at speeds close to 500 mph.  Just blowing the piston-engine competition away.  Until, that is, they started breaking up in flight.  A consequence of pressuring the cabin.  The inflating and deflating of the metal cabin fatiguing the metal of the cabin.  Until fatigue cracks appeared at stress points.  Cracks that extended from the cycles of pressurizing and depressurizing the cabin.  Until the cracks extended so much that the pressure inside the cabin blew through the cracks, disintegrating the plane in flight.

Japan is a nation of islands.  Connecting these islands together are airplanes.  They use jumbo jets like buses and commuter trains.  Packing them with 500+ passengers for short hops between the islands.  Putting far more pressurization cycles on these planes than typical long-haul 747 routes.  On August 12, 1985, Japan Airlines Flight 123 left Haneda Airport, Tokyo, for a routine flight to Osaka.  Shortly after takeoff as the cabin pressurized the rear pressure bulkhead failed (due to an improper repair splice of the pressure plate using a single row of rivets instead of a double row following a tail strike that damaged it).  The rapid force of the depressurization blew out through the tail section of the aircraft.  Causing great damage of the control surfaces.  And severing the lines in all four hydraulic systems.  Leaving the plane uncontrollable.  The crew switched their transponder to the emergency code 7700 and called in to declare an emergency.  But they could do little to save the plane.  The plane flew erratically and lost altitude until it crashed into a mountain.  Killing all but 4 of the 524 aboard.

Hawaii is similar to Japan.  They both have islands they interconnect with airplanes.  Putting a lot of pressurization cycles on these planes.  On April 28, 1988, Aloha Airlines Flight 243 left Hilo Airport bound for Honolulu.  Just as the Boeing 737 leveled off at 24,000 feet there was a loud explosive sound and a loud surge of air.  The pilots were thrown back in their seats in a violent and rapid decompression.  The flightdeck door was sucked away.  Looking behind them they could see the cabin ceiling in first class was no longer there (due to fatigue cracks radiating out from rivets that caused pressurized air to blow out, taking the ceiling and walls of the first class cabin with it).  They could see only blue sky.  They put on their oxygen masks and began an emergency descent.  The first officer switched the transponder to emergency code 7700.  The roar of air was so loud the pilots could barely hear each other as they shouted to each other or used the radio.  The flight controls were operable but not normal.  They even lost one of their two engines.  But the flight crew landed safely.  With the loss of only one life.  A flight attendant that was sucked out of the aircraft during the explosive decompression.

The Fact that 185 People survived the United Airlines 232 Crash is a Testament to the Extraordinary Skill of those Pilots

On June 12, 1972, American Airlines Flight 96 left Detroit Metropolitan Airport for Buffalo after arriving from Los Angeles.  The McDonnell Douglas DC-10 took on new living passengers in Detroit.  As well as one deceased passenger in a coffin.  Which was loaded in the rear cargo hold.  As the DC-10 approached 12,000 feet there was a loud explosive sound.  Then the flightdeck door was sucked away and the pilots were thrown back in their seats in an explosive decompression.  The aft cargo door (improperly latched—its design was later revised to prevent improperly latching in the future) had blown out as the cargo hold pressurized.  As it did the rapid decompression collapsed the floor above.  Into the control cabling.  The rudder was slammed fully left.  All three throttle levels slammed closed.  The elevator control was greatly inhibited.  The plane lost a lot of its flight controls but the pilots were able to bring the plane back to Detroit.  Using asymmetric thrust of the two wing-mounted engines and ailerons to compensate for the deflected rudder.  And both pilots pulling back hard on the yoke to move the elevator.  Due to the damage the approach was fast and low.  When they landed they applied reverse thrust to slow down the fast aircraft.  At that speed, though, the deflected rudder pulled them off the runway towards the terminal buildings.  By reapplying asymmetric thrust the pilot was able to straighten the aircraft out on the grass.  As the speed declined the rudder force decreased and the pilot was able to steer the plane back on the runway.  There was no loss of life.

On July 19, 1989, United Airlines Flight 232 took off from Stapleton International Airport in Denver for Chicago.  About an hour into the flight there was a loud bang from the rear of the plane.  The aircraft shuddered.  The instruments showed that the tail-mounted engine had failed.  As the crew responded to that the second officer saw something more alarming.  Hydraulic pressure and fluid quantity in the three hydraulic systems were falling (a fan disc in the tail-mounted engine disintegrating and exploded like shrapnel from an undetected manufacturing flaw, taking out the 3 hydraulic systems).  The flight crew soon discovered that they had lost all control of the airplane.  The plane was making a slight turn when the engine failed.  And the flight control surfaces were locked in that position.  The captain reduced power on the left engine to stop the plane from turning.  The two remaining engines became the only means of control they had.  Another DC-10 pilot traveling as a passenger came forward and offered his assistance.  He knelt on the floor behind the throttle levels and adjusted them continuously to regain control of the plane.  He tried to dampen the rising and falling of the plane (moving like a ship rolling on the ocean).  As well as turn the aircraft onto a course that would take them to an emergency landing at Sioux City.  They almost made it.  Unfortunately that rolling motion tipped the left wing down just before touchdown.  It struck the ground.  And caused the plane to roll and crash.  Killing 111 of the 296 aboard.  It was a remarkable feat of flying, though.  Which couldn’t be duplicated in the simulator given the same system failures.  As flight control by engine thrust alone cannot provide reliable flight control.  The fact that 185 people survived this crash is a testament to the extraordinary skill of those pilots.

On July 17, 1996, TWA Flight 800 took off from JFK Airport bound for Rome.  About 12 minutes into the flight the crew acknowledged air traffic control (ATC) instructions to climb to 15,000 feet.  It was the last anyone heard from TWA 800.  About 38 seconds later another airplane in the sky reported seeing an explosion and a fire ball falling into the water.  About where TWA 800 was.  ATC then tried to contact TWA 800.  “TWA800, Center…TWA eight zero zero, if you can hear Center, ident…TWA800, Center…TWA800, if you can hear Center, ident…TWA800, Center.”  There was no response.  The plane was there one minute and gone the next.  There was no distress call.  Nothing.  The crash investigation determined that an air-fuel mixture in the center fuel tank was heated by air conditioner units mounted below the tank, creating a high-pressure, explosive vapor in the tank that was ignited by an electrical spark.  The explosion broke the plane apart in flight killing all 230 aboard.

The Greatest Danger in Flying Today may be Pilots Trusting their Computers more than their Piloting Skills

On December 29, 1972, Eastern Airlines Flight 401 left JFK bound for Miami.  Flight 401 was a brand new Lockheed L-1011 TriStar.  One of the new wide-body jets to enter service along with the Boeing 747 and the McDonnell Douglas DC-10.  Not only was it big but it had the latest in automatic flight control systems.  As Flight 401 turned on final approach they lowered their landing gear.  When the three landing gear are down and locked for landing there are three green indicating lights displayed on the flightdeck on the first officer’s side.  On this night there were only 2 green lights.  Indicating that the nose wheel was not down.  So they contacted ATC with their problem and proceeded to circle the airport until they resolved the problem.  ATC told them to climb to 2000 feet.  The 1st officer flew the aircraft on the course around the airport.  The captain then tried to reach the indicating light to see if it was a burnt out lamp.  Then the flight engineer got involved.  As did the first officer after turning on the automatic altitude hold control.  Then another person on the flightdeck joined in.  That indicating lamp got everyone’s full attention.  Unable to determine if the lamp was burnt out the pilot instructed the flight engineer to climb down into the avionics bay below the flightdeck to visually confirm the nose gear was down and locked.  He reported that he couldn’t see it.  So the other guy on the flightdeck joined him.  During all of this someone bumped the yoke with enough pressure to release the automatic altitude hold but no one noticed.  The airplane began a gradual descent.  When they approached the ground a ground proximity warming went off and they checked their altitude.  Their altimeters didn’t agree with the autopilot setting.  Just as they were asking each other what was going on the aircraft crashed into the everglades.  Killing 101 of the 176 on board.

On June 1, 2009, Air France Flight 447 was en route from Rio de Janeiro to Paris.  This was a fly-by-wire Airbus A330 aircraft.  With side stick controllers (i.e., joysticks) instead of the traditional wheel and yoke controls.  The A330 had sophisticated automatic flight controls.  They practically flew the plane by themselves.  With pilots spending more of their time monitoring and inputting inputs to these systems than flying.  Flight 447 flew into some turbulence.  The autopilot disengaged.  The aircraft began to roll from the turbulence.  The pilot tried to null these out but over compensated.  At the same time he pitched the nose up abruptly, slowing the airplane and causing a stall warning as the excessive angle of attack slowed the plane from 274 knots to 52 knots.  The pilot got the rolling under control but due to the excessive angle of attack the plane was gaining a lot of altitude.  The pitot tube (a speed sensing device) began to ice up, reducing the size of the opening the air entered.  Changing the airflow into the tube.  Resulting in a speed indication that they were flying faster than they actually were.  The engines were running at 100% power but the nose was pitched up so much that the plane was losing speed and altitude.  There was no accurate air speed indication.  For pilot or autopilot.  The crew failed to follow appropriate procedures for problems with airspeed indication.  And did not understand how to recognize the approach of a stall.  Despite the high speed indicated the plane was actually stalling.   Which it did.  And fell from 38,000 feet in 3 and a half minutes.  Crashing into the ocean.  Killing all 228 on board.

It takes a lot to bring an airplane down from the sky.  And when it happens it is usually the last in a chain of events.  Where each individual event in the chain could not have brought the plane down.  But when taken together they can.  Most times pilots have a chance to save the aircraft.  Especially the stick and rudder pilots.  Who gained a lot of flying experience before the advanced autopilot systems of today.  And can feel what the airplane is doing through the touch of their hand on the yoke and through the seat of their pants.  They are tuned in to the engine noise and the environment around them.  Processing continuous sensations and sounds as well as studying their instruments and the airspace in front of them.  Because they flew the airplane.  Not the computers.  Allowing them to take immediate action instead of trying to figure out what was happening with the computers.  Losing precious time when additional seconds could trigger that last event in a chain of events that ends in the loss of the aircraft.  That’s why some of the best pilots come from this stick and rudder generation.  Such as Aloha Airlines Flight 243, American Airlines Flight 96 and United Airlines Flight 232.  Sometimes the event is so sudden or so catastrophic that there is nothing a pilot can do to save the aircraft.  Such as Japan Airlines Flight 123 and TWA Flight 800.  And sometimes pilots rely so much on automated systems that they let themselves get distracted from the business of flying.  Even the best stick and rudder pilots adjusting to new technology.  Such as Eastern Airlines Flight 401.  Or pilots brought up on the new technology.  Such as Air France Flight 447.  But these events are so rare that when a plane does fall out of the sky it is big news.  Because it rarely happens.  Planes have never been safer.  Which may now be the greatest danger in flying.  A false sense of security.  Which may allow a chain of events to end in a plane falling down from the sky.  As pilots rely more and more on computers to fly our airplanes they may step in too late to fix a problem.  Or not at all.  Trusting those computers more than their piloting skills.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Trucks, Trains, Ships and Planes

Posted by PITHOCRATES - August 21st, 2013

Technology 101

Big Over-the-Road Tractor Trailer Trucks have Big Wheels so they can have Big Brakes

If you buy a big boat chances are you have a truck or a big SUV to pull it.  For rarely do you see a small car pulling a large boat.  Have you ever wondered why?  A small car can easily pull a large boat on a level (or a near level) surface.  That’s not the problem.  The problem is stopping once it gets moving.  For that is a lot of mass.  Creating a lot of kinetic energy (one half of the mass times velocity squared).  Which is dissipated as heat as brake shoes or pads rub against the wheels.  This is why you need a big truck or SUV to pull a boat.  So you can stop it once it gets moving.

Big trucks and big SUVs have big wheels and big brakes.  Large areas where brake pads/shoes press against a rotating wheel.  All of which is heavy duty equipment.  That can grab onto to those wheels and slow them down.  Converting that kinetic energy into heat.  This is why the big over-the-road tractor trailer trucks have big wheels.  So they can have big enough brakes to stop that huge mass once it gets moving.  Without the brakes turning white hot and melting.  Properly equipped trucks can carry great loads.  Moving freight safely across our highways and byways.  But there is a limit to what they can carry.  Too much weight spread between too few axles will pound the road apart.  Which is why the state police weighs our trucks.  To make sure they have enough axles supporting the load they’re carrying.  So they don’t break up our roads.  And that they can safely stop.

It’s a little different with trains.  All train cars have a fixed number of axles.  But you will notice the size of the cars differ.  Big oversized boxcars carry a lot of freight.  But it’s more big than heavy.  Heavy freight, on the other hand, like coal, you will see in smaller cars.  So the weight they carry doesn’t exceed the permissible weight/axle.  If you ever sat at a railroad crossing as a train passed you’ve probably noticed that the rail moves as the train travels across.  Watch a section of rail the next time you’re stopped by a train.  And you will see the rail sink a little beneath the axle as it passes over.

If a Ship is Watertight and Properly Balanced it can be covered in Green Water and Rise back to the Surface

So the various sizes of train cars (i.e., rolling stock) keeps each car from being overloaded.  Unlike a truck.  Steel haulers and gravel trains (i.e., dump trucks) have numerous axles beneath the load they’re carrying.  But these axles are retractable.  For the more wheels in contact with the road the more fuel is needed to overcome the friction between the tires and the road.  And the more tires in contact with the road the more tire wear there is.  Tires and fuel are expensive.  So truckers like to have as few tires in contact with the road as possible.  When they’re running empty they will have as many of these wheels retracted up as possible.  Something you can’t do with a train.

That said, a train’s weight is critical for the safe operation of a train.  In particular, stopping a train.  The longer a train is the more distance it takes to stop.  It is hard to overload a particular car in the string of cars (i.e., consist) but the total weight tells engineers how fast they can go.  How much they must slow down for curves.  How much distance they need to bring a train to a stop.  And how many handbrakes to set to keep the train from rolling away after the pressure bleeds out of the train line (i.e., the air brakes).  You do this right and it’s safe sailing over the rails.  Ships, on the other hand, have other concerns when it comes to weight.

Ships float.  Because of buoyancy.  The weight of the load presses down on the water while the surface of the water presses back against the ship.  But where you place that weight in a ship makes a big difference.  For a ship needs to maintain a certain amount of freeboard.  The distance between the surface of the water and the deck.  Waves toss ships up and down.  At best you just want water spray splashing onto your deck.  At worst you get solid water (i.e., green water).  If a ship is watertight and properly balanced it can be covered in green water and rise back to the surface.  But if a ship is loaded improperly and lists to one side or is low in the bow it reduces freeboard.  Increases green water.  And makes it less likely to be able to safely weather bad seas.  The SS Edmund Fitzgerald sank in 1975 while crossing Lake Superior in one of the worst storms ever.  She was taking on water.  Increasing her weight and lowering her into the water.  Losing freeboard.  Had increasing amounts of green water across her deck.  To the point that a couple of monster waves crashed over her and submerged her and she never returned to the surface.  It happened so fast that the crew was unable to give out a distress signal.  And as she disappeared below the surface her engine was still turning the propeller.  Driving her into the bottom of the lake.  Breaking the ship in two.  And the torque of the spinning propeller twisting the stern upside down.

Airplanes are the only Mode of Transportation that has two Systems to Carry their Load

One of the worst maritime disasters on the Great Lakes was the sinking of the SS Eastland.  Resulting in the largest loss of life in a shipwreck on the Great Lakes.  In total 844 passengers and crew died.  Was this in a storm like the SS Edmund Fitzgerald?  No.  The SS Eastland was tied to the dock on the Chicago River.  The passengers all went over to one side of the ship.  And the mass of people on one side of the ship caused the ship to capsize.  While tied to the dock.  On the Chicago River.  Because of this shift in weight.  Which can have catastrophic results.  As it can on airplanes.  There’s a sad YouTube video of a cargo 747 taking off.  You then see the nose go up and the plane fall out of the sky.  Probably because the weight slid backwards in the plane.  Shifting the center of gravity.  Causing the nose of the plane to pitch up.  Which disrupted the airflow over the wings.  Causing them to stall.  And with no lift the plane just fell out of the sky.

Airplanes are unique in one way.  They are the only mode of transportation that has two systems to carry their weight.  On the ground the landing gear carries the load.  In the air the wings carry the load.  Which makes taking off and landing the most dangerous parts of flying.  Because a plane has to accelerate rapidly down the runway so the wings begin producing lift.  Once they do the weight of the aircraft begins to transfer from the landing gear to the wings.  Allowing greater speeds.  However, if something goes wrong that interferes with the wings producing lift the wings will be unable to carry the weight of the plane.  And it will fall out of the sky.  Back onto the landing gear.  But once the plane leaves the runway there is nothing the landing gear can gently settle on.  And with no altitude to turn or to glide back to a runway the plane will fall out of the sky wherever it is.  Often with catastrophic results.

A plane has a lot of mass.  And a lot of velocity.  Giving it great kinetic energy.  It takes long runways to travel fast enough to transfer the weight of the aircraft from the landing gear to the wings.  And it takes a long, shallow approach to land an airplane.  So the wheels touch down gently while slowly picking up the weight of the aircraft as the wings lose lift.  And it takes a long runway to slow the plane down to a stop.  Using reverse thrusters to convert that kinetic energy into heat.  Sometimes even running out of runway before bringing the plane to a stop.  No other mode of transportation has this additional complication of travelling.  Transferring the weight from one system to another.  The most dangerous part of flying.  Yet despite this very dangerous transformation flying is the safest mode of traveling.  Because the majority of flying is up in the air in miles of emptiness.  Where if something happens a skilled pilot has time to regain control of the aircraft.  And bring it down safely.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , ,