Overhead High Voltage Power Lines, Lightning Rod, Grounding Conductor, Ground Rods, Flashover and Underground Duct Bank

Posted by PITHOCRATES - August 29th, 2012

Technology 101

Electricity always wants to Take the Path of Least Resistance to Ground

Have you ever noticed bright-color globes on overhead high voltage power lines?  Do you know why they are there?  Because it’s hard to see those wires.  Which could be a problem for ships with tall masts traveling a river where these wires cross.  Or to low-flying aircraft.  Which is why you see them around airports.  And many hospitals.  Why?  Helicopters.  So when helicopter pilots are bringing critically injured patients to a hospital they will be able to see these bright-color globes and take evasive action to avoid flying into these wires.

Of course, not everything takes evasive action to avoid these lines.  One thing in particular tries its hardest to purposely hit these overhead high voltage power lines.  Lightning.  Why?  For the same reason you get a static electric shock after sliding over your cloth seats to get out of your car.  It creates a potential difference between you and your car.  So as your hand approaches your car handle to close your door a little spark jumps between you and your car.  To rebalance that unbalanced charge.  And send those ‘stripped’ electrons back home.  Which is a how a lightning strike occurs.  Only with the clouds being a much, much larger butt sliding across a car seat.  And anything sticking out of the ground being your finger.

Electricity wants to flow to the ground.  But if it flows straight to ground it can’t do much work for us.  So we try to prevent that from happening.  Which can be a struggle as electricity always wants to take the path of least resistance.  Instead of turning a motor it would much rather flow directly to the ground.  And it sometimes happens.  And when it does it can be dangerous.  For if the same amount of energy that can accelerate a subway train is shorted directly to ground there will be arcs and sparks and smoke and even a little welding as that electric discharge melts metal and ionizes the gas into an explosion of heat and noise.

So Overhead Cabling is Simpler and More Convenient to work with and Requires Fewer Power interruptions

Now these are the last things you want to happen to our electric grid.  Explosions of ionized gases and molting metal.  Because they tend to interrupt the flow of electricity in the power lines to our homes and businesses.  And thanks to work started by Benjamin Franklin we can do something to try and prevent this.  After Franklin made his wealth he became a scientist.  Because it interested him.  He studied the new field of electricity.  And he proved that lightning was in fact electricity.  So he invented the lightning rod.  To attract that lightning and help it go where it wants to go.  To the ground.  Instead of hitting the structure below the lightning rod.  And starting it on fire.

If you look at our overhead high voltage transmission lines you will notice a set of three wires.  Supported horizontally from a tower.  Or two sets of three wires supported vertically from a tower.  These are the high voltage transmission lines.  Above these lines you will see smaller lines.  At the very top of the transmission tower.  These wires are the lightning rods for the power lines below them.  They either terminate to the metal transmission towers.  Or there is a grounding wire running from these wires down a nonconductive pole to the earth.  At the base of the tower these conductors terminate to ground rods driven into the earth.  In the case of a metallic tower there are conductors connecting the base of the tower to ground rods.  So if lightning strikes at these grounding conductors or towers it will take the path of least resistance to go where it wants to go.  Along these grounding conductors to earth.

Low flying aircraft, tall ships and lightning?  Seems like overhead transmission lines give us a lot of trouble.  Wouldn’t it be smarter to bury these lines?  Yes and no.  While it is true it would be difficult for a plane, ship or lightning to hit a buried power line there are other considerations.  Such as infrastructure cost.  Overhead conductors need towers on small plots of land evenly spaced underneath.  Underground conductors need a trench, conduits, manholes, sand, rebar, concrete, etc., wherever the conductors go.  Also, overhead wires are bare.  Because they are in the open air separated from other conductors.  Conductors underground need insulation to prevent short circuits between phases.  Because the three cables of a 3-phase circuit are pulled into one conduit.  And these cables touch each other.  So the insulation, conduit, concrete and sand make it difficult to ‘tap’ a feeder to feed, say, a new substation.  Requiring power interruptions, excavating, cutting and splicing to tap an underground feeder.  Whereas tapping a bare overhead conductor requires none of that.  They can simply attach the new substation feeders to the live overhead wires.  Then close a switch in the new substation to energize it.  So overhead cabling is simpler and more convenient to work with.  And some voltages simply make overhead lines the only option.

For a Given Current you can use a Smaller Conductor in the open Air than you can use Underground

Current flows when there is a voltage differential.  The greater the voltage difference is the greater the current flow.  In 3-phase AC power generators push and pull an alternating current through a set of three cables.  Think of the reciprocating gasoline engine.  Where the up and down motion of the piston is converted into useful work.  Turning the wheels of a car.  When the current is equal in each of the three cables the 3-phase circuit is balanced.  Which means when current is moving away from the power plant on one cable it is returning to the power plant on another cable.  In North America a complete cycle of current on one conductor happens 60 times a second.  During that second voltage rises and falls as the current flows.   Think of three pistons going up and down.  The crankshaft turns at the same speed for all three pistons.  But the pistons don’t go up and down at the same time.  As it is in a three-phase feeder.  Current leaves the power plant in one conductor.  When it’s one-third of the way through its cycle current leaves in the second conductor.  When the first current is two-thirds of the way through its cycle, and the second current is one-third of the way through its cycle, current leaves in the third conductor.

Current and voltage are both zero twice in each cycle.  Just like the speed of a piston is zero twice a cycle (at the top and the bottom of its stroke).  But it’s never zero at the same time in more than one conductor.  In fact, the voltage is never the same in any two conductors at the same time.  Which means there is always a voltage differential between any two of the three conductors in a 3-phase circuit.  So a current will always flow between two phase conductors if they come into contact with each other.  And if the voltage is high enough the current will arc across the air gap (or flashover) between two conductors.  If they get too close to each other.  And the higher the voltage of these feeders the greater the distance required between the phase conductors to prevent any flashover.  On some of the highest voltage feeders (765 kilovolt) the conductors are more than 50 feet apart.  With one conductor in the middle and one on either side 50 feet away that’s 100 feet minimum distance required for a three-phase 765 kV feeder.  To put these underground would require a very wide trench.  Or cables with very, very thick insulation.  Requiring large conduits.  Deep and wide trenches.  And great cost.

Cables in open air have another advantage over underground cables.  High currents heat cables.  If a cable gets hot enough it can fail. There are only two ways to prevent this heat buildup.  Use thicker cables.  Or cool the cables.  Which can happen with overhead cabling.  The open air can dissipate heat.  Conductors in an underground duct bank have no air blowing across these cables to cool them.  Which means for a given current load you can use a smaller conductor in the open air than you can use in an underground duct bank.  Bigger cable means bigger costs.  On top of all the other additional costs.  And the inconvenience of excavating, cutting and splicing to make a tap.  So despite the risk of a ship, aircraft or lightning hitting our electric grid going overhead just makes more economic sense that going underground.  Because they are less costly.  And are easier to work on.  For replacing a failed overhead cable is a lot easier than replacing a failed underground cable.  Especially if you can’t pull the old cable out.  And don’t have a spare duct to pull a new cable in.  If that happens then you have to install new duct bank before you pull in new cable.  Which will be more expensive than the cable itself.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Inrush Current, Redundancy, Electric Grid, High Voltage Transmission Lines, Substations, Generators and Northeast Blackout of 2003

Posted by PITHOCRATES - August 22nd, 2012

Technology 101

In Electric Generators and Motors there is a Tradeoff between Voltage and Current

If you have central air conditioning you’ve probably noticed something when it turns on.  Especially at night.  The lights will momentarily dim.  Why?  Because a central air conditioner is probably the largest electric load in your house.  It draws a lot of current.  Even at 240V volts.  And when it switches on the inrush of current is so great that it sucks current away from everything else.  This momentary surge of current exceeds your electrical panel’s ability to keep up with it. Try as it might the panel cannot push out enough current.  It tries so hard that it loses its ‘pushing’ strength and its voltage fades.  But once the air conditioner runs the starting inrush of current settles down to a lower running current that the panel can easily provide.  And it recovers its strength.  Its voltage returns to normal.  And all the lights return to normal brightness.

If you have ever been stopped by a train at a railroad crossing you’ve seen another example of this voltage-current tradeoff.  As a diesel-electric locomotive starts moving you’ll see plumes of diesel exhaust puffing out of the engine.  Why?  The diesel engine drives a generator.  The generator drives electric traction motors that turn the engine’s wheels.  These traction motors are like turning on a very large air conditioner.  The inrush of current sucks current out of the generator and makes the voltage fall.  The load on the engine is so great that it slows down while it struggles to supply that current.

To prevent the engine from stalling more fuel is pumped into the engine to increase engine RPMs.  Like stomping on the accelerator in a car.  Causing those plumes of diesel exhaust.  As the wheels start turning the current in the motor windings creates a counter electromotive force (the electric field collapses on the windings inducing a current in the opposite direction).  Which resists the current flow.  Current falls.  And the voltage goes back up.  If the engine is pushed beyond its operating limits, though, it will shut down to protect itself.  Bring the locomotive to a standstill wherever it is.  Even if it’s blocking all traffic at a railroad crossing.

Generators have to be Synchronized First before Connecting to the Electric Grid

The key to reliable electric power is redundancy.  To understand electrical redundancy think about driving your car.  Your normal route to work is under construction.  And the road is closed.  What do you do?  You take a different road.  You can do this because there is road redundancy.  In fact there are probably many different ways you can drive to work.  The electric grid provides the roads for electric power to travel.  Bringing together power plants.  Substations.  And conductors.  Interconnecting you to the various power plants connected to the grid.

Electric power leaves power plants on high voltage overhead transmission lines.  These lines can travel great distances with minimal losses.  But the power is useless to you and me.  The voltage is too high.  So these high voltage lines connect to substations.  Typically two of these high voltage feeders (two cable sets of three conductors each) connect to a substation.  Coming out of these substations are more conductors (cable sets of three conductors each) that feed loads at lower voltages.  In between the incoming feeders and the outgoing feeders are a bunch of switches and transformers.  To step down the voltage.  And to allow an outbound set of conductors to be switched to either of the two incoming feeders.  So if one of the incoming feeders goes down (for maintenance, cable failure, etc.) the load can switch over to the other inbound cable set.

Redundant power feeds to these substations can come from larger substations upstream.  Even from different power plants.  And all of these power plants can connect to the grid.  Which ultimately connects the output of different generators together.  This is easier said than done.  Current flows between different voltages.  The greater the voltage difference the greater the current flow.  Our power is an alternating current.  It is a reciprocating motion of electrons in the conductors.  Which makes connecting two AC sources together tricky.  Because they have to move identically.  They have to be in phase and move back and forth in the conductors at the same time.  Currents have to leave the generator at the same time.  And return at the same time.  If they do then the voltage differences between the phases will be zero.  And no current will flow between the power plants.  Instead it will all go into the grid.  If they are not synchronized when connected there will be voltage difference between the phases causing current to flow between the power stations.  With the chance of causing great damage.

The Northeast Blackout of 2003 started from one 345 kV Transmission Line Failing

August 14, 2003 was a hot day across the Midwest and the Northeast.  People were running their air conditioners.  Consuming a lot of electric power.  A 345 kV overhead transmission line in Northeast Ohio was drawing a lot of current to feed that electric power demand.  The feeder carried so much current that it heated up on that hot day.  And began to sag.  It came into contact with a tree.  The current jumped from the conductor to the tree.  And the 345 kV transmission line failed.  Power then switched over automatically to other lines.  Causing them to heat up, sag and fail.  As more load was switched onto fewer lines a cascade of failures followed.

As lines overloaded and failed power surged through the grid to rebalance the system.  Currents soared and voltages fell.  Power raced one way.  Then reversed and raced the other way when other lines failed.  Voltages fell with these current surges.  Generators struggled to provide the demanded power.  Some generators sped up when some loads disconnected from the grid.  Taking them out of synch with other generators.  Generators began to disconnect from the grid to protect themselves from these wild fluctuations.  And as they went off-line others tried to pick up their load and soon exceeded their operating limits.  Then they disconnected from the grid.  And on and on it went.  Until the last failure of the Northeast blackout of 2003 left a huge chunk of North America without any electric power.  From Ontario to New Jersey.  From Michigan to Massachusetts.  All started from one 345 kV transmission line failing.

In all about 256 power plants went off-line.  As they were designed to do.  Just like a diesel locomotive engine shutting down to protect itself.  Generators are expensive.  And they take a lot of time to build.  To transport.  To install.  And to test, start up and put on line.  So the generators have many built-in safeguards to prevent any damage.  Which was part of the delay in restoring power.  Especially the nuclear power plants.  Restoring power, though, wasn’t just as easy as getting the power plants up and running again.  All the outgoing switches at all those substations had to be opened first before reenergizing those incoming feeders.  Then they carefully closed the outgoing switches to restore power while keeping the grid balanced.  And to prevent any surges that may have pulled a generator out of synch.  It’s a complicated system.  But it works.  When it’s maintained properly.  And there is sufficient power generation feeding the grid.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , ,

Electric Grid, Voltage, Current, Power, Phase Conductor, Neutral Conductor, 3-Phase Power, Transmission Towers and Corona Discharge

Posted by PITHOCRATES - August 15th, 2012

Technology 101

The Electric Grid is the Highways and Byways for Electric Power from the Power Plant to our Homes

Even our gasoline-powered cars operate on electricity.  The very thing that ignites the air-fuel mixture is an electric spark.  Pushed across an air-gap by a high voltage.  Because that’s something that high voltages do.  Push electrons with such great force that they can actually leave a conductor and travel through the air to another conductor.  Something we don’t want to happen most of the time.  Unless it’s in a spark plug in our gasoline engine.  Or in some movie prop in a cheap science fiction movie.

No.  When we use high voltage to push electrons through a conductor the last thing we want to happen is for the electrons to leave that conductor.  Because we spend a pretty penny to push those electrons out of a power plant.  And if we push the electrons out of the conductor they won’t do much work for us.  Which is the whole point of putting electricity into the electric grid.  To do work for us.

The electric grid.  What exactly is it?  The highways and byways for electric power.  Power plants produce electric power.  And send it to our homes.  As well as our businesses.  Power is the product of voltage and current.  In our homes something we plug into a 120V outlet that draws 8 amps of current consumes 960 watts.  Which is pretty big for a house.  But negligible for a power plant generator producing current at 20,000 volts.  For at 20,000 volts a generator only has to produce 0.48 amps (20,000 X 0.48 = 960).  Or about 6% of the current at 120V.

Between our Homes and the Power Plant we can Change that Current by Changing the Voltage

Current is money.  Just as time is money.  In fact current used over time helps to determine your electric bill.  Where the utility charges you for kilowatt hours (voltage X current X time).  (This would actually give you watt-hours.  You need to divide by 1000 to get kilowatt hours.)  The electric service to your house is a constant voltage.  So it’s the amount of current you use that determines your electric bill.  The more current you use the greater the power you use.  Because in the power equation (voltage X current) voltage is constant while current increases.

Current travels in conductors.  The size of the conductor determines a lot of costs.  Think of automobile traffic.  Areas that have high traffic volumes between them may have a very expensive 8-lane Interstate expressway interconnecting them.  Whereas a lone farmer living in the ‘middle of nowhere’ may only have a much less expensive dirt road leading to his or her home.  And so it is with the electric grid.  Large consumers of electric power need an Interstate expressway.  To move a lot of current.  Which is what actually spins our electrical meters.  Current.  However, between our homes and the power plant we can change that current.  By changing the voltage.  Thereby reducing the cost of that electric power Interstate expressway.

The current flowing through our electric grid is an alternating current.  It leaves the power plant.  Travels in the conductors for about 1/120 of a second.  Then reverses direction and heads back to the power plant.  And reverses again in another 1/120 of a second.  One complete cycle (travel in both directions) takes 1/60 of a second.  And there are 60 of these complete cycles per second.  Hence the alternating current.  If you’re wondering how this back and forth motion in a wire can do any work just think of a steam locomotive.  Or a gasoline engine.  Where a reciprocating (back and forth) motion is converted into rotational motion that can drive a steam locomotive.  Or an automobile.

The Voltages of our Electric Grid balance the Cost Savings (Smaller Wires) with the Higher Costs (Larger Towers)

An electric circuit needs two conductors.  When current is flowing away from the power plant in one it is flowing back to the power plant in the other.  As the current changes direction is has to stop first.  And when it stops flowing the current is zero.  Using the power formula this means there are zero watts twice a cycle.  Or 120 times a second.  Which isn’t very efficient.  However, if you bring two other sets of conductors to the work load and time the current in them properly you can remove these zero-power moments.  You send the first current out in one set of conductors and wait 1/3 of a cycle.  Then you send the second current out in the second set of conductors and wait another 1/3 cycle.  Then you send the third current out in the third set of conductors.  Which guarantees that when a current is slowing to stop to reverse direction there are other currents moving faster towards their peak currents in the other conductors.  Making 3-phase power more efficient than single-phase power.  And the choice for all large consumers of electric power.

Anyone who has ever done any electrical wiring in their home knows you can share neutral conductors.  Meaning more than one circuit coming from your electrical panel can share the return path back to the panel.  If you’ve ever been shocked while working on a circuit you switched off in your panel you have a shared neutral conductor.  Even though you switched off the circuit you were working on another circuit sharing that neutral was still switched on and placing a current on that shared neutral.  Which is what shocked you.  So if we can share neutral conductors we don’t need a total of 6 conductors as noted above.  We only need 4.  Because each circuit leaving the power plant (i.e., phase conductor) can share a common neutral conductor on its way back to the power plant.  But the interesting thing about 3-phase power is that you don’t even need this neutral conductor.  Because in a balanced 3-phase circuit (equal current per phase) there is no current in this neutral conductor.  So it’s not needed as all the back and forth current movement happens in the phase conductors.

Electric power travels in feeders that include three conductors per feeder.  If you look at overhead power lines you will notice they all come in sets of threes when they get upstream of the final transformer that feeds your house.  The lines running along your backyard will have three conductors across the top of the poles.  As they move back to the power plant they pass through additional transformers that increase their voltage (and reduce their current).  And the electric transmission towers get bigger.  With some having two sets of 3-conductor feeders.  The higher the voltage the higher off the ground they have to be.  And the farther apart the phase conductors have to be so the high voltage doesn’t cause an arc to jump the ‘air gap’ between phase conductors.  As you move further away from your home back towards the power plant the voltage will step up to values like 2.4kV (or 2,400 volts), 4.8kV and13.2kV that will typically take you back to a substation.  And then from these substations the big power lines head back towards the power plant.  On even bigger towers.  At voltages of 115kV, 138kV, 230kV, 345kv, 500kV and as high as 765kV.  When they approach the power plant they step down the voltage to match the voltage produced by its generators.

They select the voltages of our electric grid to balance the cost savings (smaller wires) with the higher costs (larger towers taking up more land).  If they increase the voltage so high that they can use very thin and inexpensive conductors the towers required to transmit that voltage safely may be so costly that they exceed the cost savings of the thinner conductors.  So there is an economic limit on voltage levels  As well as other considerations of very high voltages (such as corona discharge where high voltages create such a power magnetic field around the conductors that it may ionize the air around it causing a sizzling sound and a fuzzy blue glow around the cable.  Not to mention causing radio interference.  As well as creating some smog-causing pollutants like ozone and nitrogen oxides.)

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , ,

Thomas Edison, Patents, Intellectual Property Rights, Nikola Tesla, George Westinghouse, DC, AC and the War of Currents

Posted by PITHOCRATES - March 27th, 2012

History 101

Thomas Edison protected his Intellectual Property Rights with over 1,000 Patents

Thomas Edison was a great inventor.  A great entrepreneur.  But he wasn’t a great scientist or engineer.  He was home-schooled by his mom.  And didn’t go to college.  But he read a lot.  And loved to tinker.  He grew up in Port Huron, Michigan.  At one end of the train line that ran between Port Huron and Detroit.  Where he sold newspapers and other things to commuters during the Civil War.  Then he saved the life of some kid.  Pulled him out of the way of a runaway boxcar.  The kid’s dad ran the train station.  Out of gratitude for saving his son’s life he taught the young Edison Morse Code.  And trained him to be a telegraph operator.  He mastered it so well that Edison invented a better telegraph machine.  The Quadruplex telegraph.  Because he liked to tinker.

What made him a great entrepreneur and not a great scientist or engineer is that his inventions had a commercial purpose.  He didn’t invent to solve life’s great mysteries.  He invented to make money.  By creating things so great that people would want them.  And pay money for them.  He also had an eye on production costs.  So he could build these things the people wanted at affordable prices.  For if they were too expensive the people couldn’t buy them.  And make him rich.  So his inventions used technology to keep production costs down while keeping consumer interest high.  Because of the profit incentive.  But the POSSIBILITY of profits wasn’t enough to push Edison to set up his invention lab.  Where he employed a team of inventors to work full time inventing things.  And figuring out how to mass-produce inventions that made everyone’s life better.  He needed something else.  Something that GUARANTEED Edison could profit from his inventions.  The patent.  That gave the patent holder exclusive rights to profit from their invention.

Inventors and entrepreneurs spend a lot of money inventing things.  They do this because they know that they can file a patent when they invent something that people will buy.  Protecting their intellectual property rights.  So they alone can profit from the fruit of all their labors.  And Edison was one of these inventors.  One of the most prolific inventors of all time.  Filing over 1,000 patents.  Including one on the incandescent light bulb.  Which was going to replace gas lamps and candles.  And provided a need for another new invention.  Electric power distribution.  Something else he spent a lot of time tinkering with.  Producing electrical generators.  And an electric power distribution system.  Which was going to make him an even richer man.  As he held the patents for a lot of the technology involved.  However, he was not to become as rich as he had hoped on his electric power distribution system.  Not for any patent infringements.  But because of a mistreated former employee who had a better idea.

Thomas Edison and George Westinghouse battled each other in the War of Currents

Nikola Tesla was a brilliant electrical engineer.  But not a great entrepreneur.  So he worked for someone who was.  Thomas Edison.  Until Edison broke a promise.  He offered a substantial bonus to Tesla if he could improve Edison’s electric power generating plants.  He did.  And when he asked for his bonus Edison reneged on his promise.  Telling the immigrant Tesla that he didn’t understand American humor.  Angry, Tesla resigned and eventually began working for George Westinghouse.  An Edison competitor.  Who appreciated the genius of Tesla.  And his work.  Especially his work on polyphase electrical systems.  Using an alternating current (AC).  Unlike Edison’s direct current (DC).  Bringing Edison and Tesla back together again.  In war.

Direct current had some limitations.  The chief being that DC didn’t work with transformers.  While AC did.  With transformers you could change the voltage of AC systems.  You could step the voltage up.  And step it back down.  This gave AC a huge advantage over DC.  Because power equals current multiplied by voltage (P=I*E).  To distribute large amounts of power you needed to generate a high current.  Or a high voltage.  Something both DC and AC power can do.  However, there is an advantage to using high voltages instead of high currents.  Because high currents need thicker wires.  And we make wires out of copper or aluminum.  Which are expensive.  And the DC wires have to get thicker the farther away they get from the generator plant.  Meaning that a DC generating plant could only serve a small area.  Requiring numerous DC power plants to meet the power requirements of a single city.  Whereas AC power could travel across states.  Making AC the current of choice for anyone paying the bill to install an electric distribution system.

So the ability to change voltages is very beneficial.  And that’s something DC power just couldn’t do.  What the generator generated is what you got.  Not the case with AC power.  You can step it up to a higher voltage for distribution.  Then you can step it down for use inside your house.  Which meant a big problem for Edison.  For anyone basing their decision on price alone would choose AC.  So he declared war on AC power.  Saying that it was too dangerous to bring inside anyone’s house.  And he proved it by electrocuting animals.  Including an elephant.  And to show just how lethal it was Edison pushed for its use to replace the hangman’s noose.  Saying that anything as deadly as what states used to put prisoners to death was just too deadly to bring into anyone’s house.  But not even the electric chair could save Edison’s DC power.  And he lost the War of Currents.  For Tesla’s AC power was just too superior to Edison’s DC power not to use. 

Nikola Tesla was a Brilliant Engineer who Preferred Unraveling the Mysteries of the Universe over Business

George Westinghouse would get rich on electrical distribution.  Thanks to Nikola Tesla.  And the patents for the inventions he could have created for Thomas Edison.  If he only recognized his genius.  Which he lamented near death as his greatest mistake.  Not appreciating Tesla.  Or his work.  But Edison did well.  As did Westinghouse.  They both died rich.  Unlike Tesla.

Westinghouse could have made Tesla a very rich man.  But his work in high voltage, high frequency, wireless power led him away from Westinghouse.  For he wanted to provide the world with free electric power.  By creating power transmitters.  That could transmit power wirelessly.  Where an electric device would have an antenna to receive this wireless power.  He demonstrated it to some potential investors.  He impressed them.  But lost their funding when they asked one question.  Where does the electric meter go?  Free electric power was a noble idea.  But nothing is truly free.  Even free power.  Because someone had to generate that power.  And if you didn’t charge those using that power how were you going to pay those generating that power?

Edison and Westinghouse were great entrepreneurs.  Whereas Tesla was a brilliant engineer.  He preferred unraveling the mysteries of the universe over business.  Tesla probably suffered from obsessive-compulsive disorder.  Think of the character Sheldon Cooper on The Big Bang Theory television sitcom.  He was a lot like that character.  Brilliant.  Odd.  And interested in little else but his work.  He lived alone.  And died alone.  A bachelor.  Living in a two-room hotel room in the last decade of his life.  Despite his inventions that changed the world.  And the fortunes he made for others.  Sadly, Tesla did not die a rich man.  Like Edison and Westinghouse.  But he did live a long life.  And few men or women changed the world like he did.  A brilliant mind that comes around but once in a millennium.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,