# Magnets, Magnetic Field, Electromagnet, Electromechanical Solenoid, Stator, Armature, DC Electric Motor and Automobile Starter Motor

Posted by PITHOCRATES - January 1st, 2014

# Technology 101

(Originally published April 18th, 2012)

## Electric Current flowing through a Wire can Induce Magnetic Fields Similar to those Magnets Create

We’ve all played with magnets as children.  And even as children we’ve observed things.  If you placed a bar magnet on a table and approached it with another one in your hand one of two things would happen.  As the magnets approached each other the one on the table would either move towards the other magnet.  Or away from the other magnet.  That’s because all magnets are dipoles.  That is, they have two poles.  A north pole.  And a south pole.

These poles produce a magnetic field.  Outside of the magnet this field ‘flows’ from north to south.  Inside the magnet it ‘flows’ from south to north.  So imagine this magnetic force traveling through the magnet from south to north and right out of the north pole of the magnet.  Where it then bends around and heads back to the south pole.  Something most of us saw as children.  When we placed a piece of paper with iron filings over a bar magnet.  As we placed the paper over the magnet the iron filings moved.  They formed in lines.  That followed the magnetic field created by the magnetic dipole.  You can’t see the direction of the field but it only ‘flows’ in one direction.  As noted above.  If the north pole of one magnet is placed near the south pole of another the magnetic field ‘flows’ from the north pole of one magnet to the south pole of the other magnet.  Pulling them together.  If both north poles or both south poles are placed near each other they will repulse each other.  Because the magnetic field is ‘flowing’ out from each north pole.  Or into each south pole.  The magnets repulse each other because the magnetic field is trying to flow from north to south.  If one magnet was able to rotate this repulsion would rotate the magnet about 90 degrees.  To try and align one north pole with one south pole.  As the momentum pushed the magnet past the 90 degree point the force would reverse to attraction.  Rotating the magnet about another 90 degrees.  Where it will then stop.  Having aligned a north and a south pole.

It turns out this ability to move things with magnetic fields is very useful.  Both in linear motion.  And rotational motion.  Especially after we observed we could create magnetic fields by passing an electric current through a wire.  When you do a magnetic field circles the wire.  To determine which direction you simply use the right-hand rule.  Point your thumb in the direction of the current flow and wrap your fingers around the wire.  Your fingers point in the direction of the magnetic field.  Fascinating, yes?  Well, okay, maybe not.  But this is.  You can wrap that wire around a metal rod.  Creating a solenoid.  And all those induced magnetic fields add up.  The more coils the greater the magnetic field.  That ‘flows’ in the same direction in that metal rod.  Creating an electromagnet out of that metal rod.  If you ever saw a crane in a junk yard picking up scrap metal with a magnet this is what’s happening.  The crane operator turns on an electromagnet to attract and hold that scrap metal.  And turns off the electromagnet to release that scrap metal.

## A DC Electric Motor is Basically a Fixed Magnet Interacting with a Rotating Magnet

If that metal rod was free to move you get something completely different.  For when you pass a current through that coiled wire the magnetic force it creates will move that metal rod.  If it’s not restrained it will fly right out of the coil.  Which is interesting to see but not very useful.  But the ability to move a restrained metal rod at the flick of a switch can be very useful.  For we can use a solenoid to convert electrical energy into linear mechanical movement.  As in a transducer.  An electromechanical solenoid.  That takes an electrical input to generate a mechanical output.  Which we use in many things.  Like in a high-speed conveyor system that sorts things.  Like a baggage handling system at an airport.  Or in an order fulfillment center.  Where things fly down a conveyor belt while diverter gates move to route things to their ultimate destination.  If the gate is not activated the product stays on the main belt.  When a gate is activated a gate moves across the path of the main conveyor belt and diverts the product to a new conveyor line or a drop off.  And the things that operate those gates are electromechanical solenoids.  Or transducers.  Things that convert an electrical input to a mechanical output.  To produce a linear mechanical motion.  To move that gate.

Solenoids are useful.  A lot of things work because of them.  But there is only so much this linear motion can do.  Basically alternating between two states.  Open and closed.   In or out.
On or off.  Again, useful.  But of limited use.  However, we can use these same principles and create rotational motion.  Which is far more useful.  Because we can make electric motors with the rotational motion created by magnetic fields.  The first electric motors were direct current (DC).  And included two basic parts.  The stator.  And the rotor (or armature).  The stator creates a fixed magnetic field.  With permanent magnates.  Or one created with current passing through coiled wiring.  The armature is made up of multiple coils.  Each coil insulated and separate from the next one.  When an electric current goes through one of these rotor coils it creates an electromagnet.

So a DC electric motor is basically a fixed magnet interacting with a rotating magnet.  Current passes to the rotor winding through brushes in contact with the armature.  Like closing a switch.  Current flows in through one brush.  And out through another.  When current goes through one of these rotor coils it creates an electromagnet.  With a north and south pole.  As this magnetic field interacts with the fixed magnetic field produced by the stator there are forces of attraction and repulsion.  As the ‘like’ poles repel each other.  And the ‘unlike’ poles attract each other.  Causing the armature to turn.  After it turns the brushes ‘disconnect’ from that rotor wiring and ‘connect’ to the next rotor winding in the armature.  Creating a new electromagnet.  And new forces of repulsion and attraction.  Causing the armature to continue to turn.  And so on to produce useful rotational mechanical motion.

## An Automobile Starter Motor combines an Electromechanical Solenoid and a DC Electric Motor

Everyone who has ever driven a car is thoroughly familiar with electromechanical solenoids and DC electric motors.  Because unlike our forefathers who had to use hand-cranks to start their cars we don’t.  All we have to do is turn a key.  Or press a button.  And that internal combustion engine starts turning.  Fuel begins to flow to the cylinders.  And electricity flows to the spark plugs.  Igniting that compressed fuel-air mixture in the cylinder.  Bringing that engine to life.

So what starts this process?  An electromechanical solenoid.  And a DC motor.  Packaged together in an automobile starter motor.  The other components that make this work are the starter ring gear on the flywheel (mounted to the engine to smooth out the rotation created by the reciprocating pistons) and the car battery.  When you turn the ignition key current flows from the battery to the electromechanical solenoid.  This linear motion operates a lever that moves a drive pinion out of the starter (while compressing a spring inside the starter), engaging it with the starter ring gear.  Current also flows into a DC motor inside the starter.  As this motor spins it rotates the starter ring gear on the flywheel.  As combustion takes place in the cylinders the pistons start reciprocating, turning the crankshaft.  At which time you let go of the ignition key.  Stopping the current flow through both the solenoid and the DC motor.  The starter stops spinning.  And that compressed spring retracts the drive pinion from the starter ring gear.  All happening in a matter of seconds.  So quick and convenient you don’t give it a second thought.  You just put the car in gear and head out on the highway.  And enjoy the open road.  Wherever it may take you.  For getting there is half the fun.  Or more.

Electric motors have come a long way since our first DC motors.  Thanks to the advent of AC power distribution and polyphase motors.  Brought to us by the great Nikola Tesla.  While working for the great George Westinghouse.  Pretty much any electric motor today is based on a Tesla design.  But little has changed on the automotive starter motor.  Because batteries are still DC.  And before a car starts that’s all there is.  Once it’s running, though, a polyphase AC generator produces all the electricity used after that.  A bridge rectifier converts the three phase AC current into DC.  Providing all the electric power the car needs.  Even charging the battery.  So it’s ready to spin that starter motor the next time you get into your car.

www.PITHOCRATES.com

# The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 26th, 2012

# Technology 101

(Original published December 21st, 2011)

## A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

## Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

## Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

## Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

# Magnets, Magnetic Field, Electromagnet, Electromechanical Solenoid, Stator, Armature, DC Electric Motor and Automobile Starter Motor

Posted by PITHOCRATES - April 18th, 2012

# Technology 101

## Electric Current flowing through a Wire can Induce Magnetic Fields Similar to those Magnets Create

We’ve all played with magnets as children.  And even as children we’ve observed things.  If you placed a bar magnet on a table and approached it with another one in your hand one of two things would happen.  As the magnets approached each other the one on the table would either move towards the other magnet.  Or away from the other magnet.  That’s because all magnets are dipoles.  That is, they have two poles.  A north pole.  And a south pole.

These poles produce a magnetic field.  Outside of the magnet this field ‘flows’ from north to south.  Inside the magnet it ‘flows’ from south to north.  So imagine this magnetic force traveling through the magnet from south to north and right out of the north pole of the magnet.  Where it then bends around and heads back to the south pole.  Something most of us saw as children.  When we placed a piece of paper with iron filings over a bar magnet.  As we placed the paper over the magnet the iron filings moved.  They formed in lines.  That followed the magnetic field created by the magnetic dipole.  You can’t see the direction of the field but it only ‘flows’ in one direction.  As noted above.  If the north pole of one magnet is placed near the south pole of another the magnetic field ‘flows’ from the north pole of one magnet to the south pole of the other magnet.  Pulling them together.  If both north poles or both south poles are placed near each other they will repulse each other.  Because the magnetic field is ‘flowing’ out from each north pole.  Or into each south pole.  The magnets repulse each other because the magnetic field is trying to flow from north to south.  If one magnet was able to rotate this repulsion would rotate the magnet about 90 degrees.  To try and align one north pole with one south pole.  As the momentum pushed the magnet past the 90 degree point the force would reverse to attraction.  Rotating the magnet about another 90 degrees.  Where it will then stop.  Having aligned a north and a south pole.

It turns out this ability to move things with magnetic fields is very useful.  Both in linear motion.  And rotational motion.  Especially after we observed we could create magnetic fields by passing an electric current through a wire.  When you do a magnetic field circles the wire.  To determine which direction you simply use the right-hand rule.  Point your thumb in the direction of the current flow and wrap your fingers around the wire.  Your fingers point in the direction of the magnetic field.  Fascinating, yes?  Well, okay, maybe not.  But this is.  You can wrap that wire around a metal rod.  Creating a solenoid.  And all those induced magnetic fields add up.  The more coils the greater the magnetic field.  That ‘flows’ in the same direction in that metal rod.  Creating an electromagnet out of that metal rod.  If you ever saw a crane in a junk yard picking up scrap metal with a magnet this is what’s happening.  The crane operator turns on an electromagnet to attract and hold that scrap metal.  And turns off the electromagnet to release that scrap metal.

## A DC Electric Motor is Basically a Fixed Magnet Interacting with a Rotating Magnet

If that metal rod was free to move you get something completely different.  For when you pass a current through that coiled wire the magnetic force it creates will move that metal rod.  If it’s not restrained it will fly right out of the coil.  Which is interesting to see but not very useful.  But the ability to move a restrained metal rod at the flick of a switch can be very useful.  For we can use a solenoid to convert electrical energy into linear mechanical movement.  As in a transducer.  An electromechanical solenoid.  That takes an electrical input to generate a mechanical output.  Which we use in many things.  Like in a high-speed conveyor system that sorts things.  Like a baggage handling system at an airport.  Or in an order fulfillment center.  Where things fly down a conveyor belt while diverter gates move to route things to their ultimate destination.  If the gate is not activated the product stays on the main belt.  When a gate is activated a gate moves across the path of the main conveyor belt and diverts the product to a new conveyor line or a drop off.  And the things that operate those gates are electromechanical solenoids.  Or transducers.  Things that convert an electrical input to a mechanical output.  To produce a linear mechanical motion.  To move that gate.

Solenoids are useful.  A lot of things work because of them.  But there is only so much this linear motion can do.  Basically alternating between two states.  Open and closed.   In or out.  On or off.  Again, useful.  But of limited use.  However, we can use these same principles and create rotational motion.  Which is far more useful.  Because we can make electric motors with the rotational motion created by magnetic fields.  The first electric motors were direct current (DC).  And included two basic parts.  The stator.  And the rotor (or armature).  The stator creates a fixed magnetic field.  With permanent magnates.  Or one created with current passing through coiled wiring.  The armature is made up of multiple coils.  Each coil insulated and separate from the next one.  When an electric current goes through one of these rotor coils it creates an electromagnet.

So a DC electric motor is basically a fixed magnet interacting with a rotating magnet.  Current passes to the rotor winding through brushes in contact with the armature.  Like closing a switch.  Current flows in through one brush.  And out through another.  When current goes through one of these rotor coils it creates an electromagnet.  With a north and south pole.  As this magnetic field interacts with the fixed magnetic field produced by the stator there are forces of attraction and repulsion.  As the ‘like’ poles repel each other.  And the ‘unlike’ poles attract each other.  Causing the armature to turn.  After it turns the brushes ‘disconnect’ from that rotor wiring and ‘connect’ to the next rotor winding in the armature.  Creating a new electromagnet.  And new forces of repulsion and attraction.  Causing the armature to continue to turn.  And so on to produce useful rotational mechanical motion.

## An Automobile Starter Motor combines an Electromechanical Solenoid and a DC Electric Motor

Everyone who has ever driven a car is thoroughly familiar with electromechanical solenoids and DC electric motors.  Because unlike our forefathers who had to use hand-cranks to start their cars we don’t.  All we have to do is turn a key.  Or press a button.  And that internal combustion engine starts turning.  Fuel begins to flow to the cylinders.  And electricity flows to the spark plugs.  Igniting that compressed fuel-air mixture in the cylinder.  Bringing that engine to life.

So what starts this process?  An electromechanical solenoid.  And a DC motor.  Packaged together in an automobile starter motor.  The other components that make this work are the starter ring gear on the flywheel (mounted to the engine to smooth out the rotation created by the reciprocating pistons) and the car battery.  When you turn the ignition key current flows from the battery to the electromechanical solenoid.  This linear motion operates a lever that moves a drive pinion out of the starter (while compressing a spring inside the starter), engaging it with the starter ring gear.  Current also flows into a DC motor inside the starter.  As this motor spins it rotates the starter ring gear on the flywheel.  As combustion takes place in the cylinders the pistons start reciprocating, turning the crankshaft.  At which time you let go of the ignition key.  Stopping the current flow through both the solenoid and the DC motor.  The starter stops spinning.  And that compressed spring retracts the drive pinion from the starter ring gear.  All happening in a matter of seconds.  So quick and convenient you don’t give it a second thought.  You just put the car in gear and head out on the highway.  And enjoy the open road.  Wherever it may take you.  For getting there is half the fun.  Or more.

Electric motors have come a long way since our first DC motors.  Thanks to the advent of AC power distribution and polyphase motors.  Brought to us by the great Nikola Tesla.  While working for the great George Westinghouse.  Pretty much any electric motor today is based on a Tesla design.  But little has changed on the automotive starter motor.  Because batteries are still DC.  And before a car starts that’s all there is.  Once it’s running, though, a polyphase AC generator produces all the electricity used after that.  A bridge rectifier converts the three phase AC current into DC.  Providing all the electric power the car needs.  Even charging the battery.  So it’s ready to spin that starter motor the next time you get into your car.

www.PITHOCRATES.com

# The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 21st, 2011

# Technology 101

## A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

## Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

## Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

## Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com