The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 26th, 2012

Technology 101

(Original published December 21st, 2011)

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Thomas Edison, Patents, Intellectual Property Rights, Nikola Tesla, George Westinghouse, DC, AC and the War of Currents

Posted by PITHOCRATES - March 27th, 2012

History 101

Thomas Edison protected his Intellectual Property Rights with over 1,000 Patents

Thomas Edison was a great inventor.  A great entrepreneur.  But he wasn’t a great scientist or engineer.  He was home-schooled by his mom.  And didn’t go to college.  But he read a lot.  And loved to tinker.  He grew up in Port Huron, Michigan.  At one end of the train line that ran between Port Huron and Detroit.  Where he sold newspapers and other things to commuters during the Civil War.  Then he saved the life of some kid.  Pulled him out of the way of a runaway boxcar.  The kid’s dad ran the train station.  Out of gratitude for saving his son’s life he taught the young Edison Morse Code.  And trained him to be a telegraph operator.  He mastered it so well that Edison invented a better telegraph machine.  The Quadruplex telegraph.  Because he liked to tinker.

What made him a great entrepreneur and not a great scientist or engineer is that his inventions had a commercial purpose.  He didn’t invent to solve life’s great mysteries.  He invented to make money.  By creating things so great that people would want them.  And pay money for them.  He also had an eye on production costs.  So he could build these things the people wanted at affordable prices.  For if they were too expensive the people couldn’t buy them.  And make him rich.  So his inventions used technology to keep production costs down while keeping consumer interest high.  Because of the profit incentive.  But the POSSIBILITY of profits wasn’t enough to push Edison to set up his invention lab.  Where he employed a team of inventors to work full time inventing things.  And figuring out how to mass-produce inventions that made everyone’s life better.  He needed something else.  Something that GUARANTEED Edison could profit from his inventions.  The patent.  That gave the patent holder exclusive rights to profit from their invention.

Inventors and entrepreneurs spend a lot of money inventing things.  They do this because they know that they can file a patent when they invent something that people will buy.  Protecting their intellectual property rights.  So they alone can profit from the fruit of all their labors.  And Edison was one of these inventors.  One of the most prolific inventors of all time.  Filing over 1,000 patents.  Including one on the incandescent light bulb.  Which was going to replace gas lamps and candles.  And provided a need for another new invention.  Electric power distribution.  Something else he spent a lot of time tinkering with.  Producing electrical generators.  And an electric power distribution system.  Which was going to make him an even richer man.  As he held the patents for a lot of the technology involved.  However, he was not to become as rich as he had hoped on his electric power distribution system.  Not for any patent infringements.  But because of a mistreated former employee who had a better idea.

Thomas Edison and George Westinghouse battled each other in the War of Currents

Nikola Tesla was a brilliant electrical engineer.  But not a great entrepreneur.  So he worked for someone who was.  Thomas Edison.  Until Edison broke a promise.  He offered a substantial bonus to Tesla if he could improve Edison’s electric power generating plants.  He did.  And when he asked for his bonus Edison reneged on his promise.  Telling the immigrant Tesla that he didn’t understand American humor.  Angry, Tesla resigned and eventually began working for George Westinghouse.  An Edison competitor.  Who appreciated the genius of Tesla.  And his work.  Especially his work on polyphase electrical systems.  Using an alternating current (AC).  Unlike Edison’s direct current (DC).  Bringing Edison and Tesla back together again.  In war.

Direct current had some limitations.  The chief being that DC didn’t work with transformers.  While AC did.  With transformers you could change the voltage of AC systems.  You could step the voltage up.  And step it back down.  This gave AC a huge advantage over DC.  Because power equals current multiplied by voltage (P=I*E).  To distribute large amounts of power you needed to generate a high current.  Or a high voltage.  Something both DC and AC power can do.  However, there is an advantage to using high voltages instead of high currents.  Because high currents need thicker wires.  And we make wires out of copper or aluminum.  Which are expensive.  And the DC wires have to get thicker the farther away they get from the generator plant.  Meaning that a DC generating plant could only serve a small area.  Requiring numerous DC power plants to meet the power requirements of a single city.  Whereas AC power could travel across states.  Making AC the current of choice for anyone paying the bill to install an electric distribution system.

So the ability to change voltages is very beneficial.  And that’s something DC power just couldn’t do.  What the generator generated is what you got.  Not the case with AC power.  You can step it up to a higher voltage for distribution.  Then you can step it down for use inside your house.  Which meant a big problem for Edison.  For anyone basing their decision on price alone would choose AC.  So he declared war on AC power.  Saying that it was too dangerous to bring inside anyone’s house.  And he proved it by electrocuting animals.  Including an elephant.  And to show just how lethal it was Edison pushed for its use to replace the hangman’s noose.  Saying that anything as deadly as what states used to put prisoners to death was just too deadly to bring into anyone’s house.  But not even the electric chair could save Edison’s DC power.  And he lost the War of Currents.  For Tesla’s AC power was just too superior to Edison’s DC power not to use. 

Nikola Tesla was a Brilliant Engineer who Preferred Unraveling the Mysteries of the Universe over Business

George Westinghouse would get rich on electrical distribution.  Thanks to Nikola Tesla.  And the patents for the inventions he could have created for Thomas Edison.  If he only recognized his genius.  Which he lamented near death as his greatest mistake.  Not appreciating Tesla.  Or his work.  But Edison did well.  As did Westinghouse.  They both died rich.  Unlike Tesla.

Westinghouse could have made Tesla a very rich man.  But his work in high voltage, high frequency, wireless power led him away from Westinghouse.  For he wanted to provide the world with free electric power.  By creating power transmitters.  That could transmit power wirelessly.  Where an electric device would have an antenna to receive this wireless power.  He demonstrated it to some potential investors.  He impressed them.  But lost their funding when they asked one question.  Where does the electric meter go?  Free electric power was a noble idea.  But nothing is truly free.  Even free power.  Because someone had to generate that power.  And if you didn’t charge those using that power how were you going to pay those generating that power?

Edison and Westinghouse were great entrepreneurs.  Whereas Tesla was a brilliant engineer.  He preferred unraveling the mysteries of the universe over business.  Tesla probably suffered from obsessive-compulsive disorder.  Think of the character Sheldon Cooper on The Big Bang Theory television sitcom.  He was a lot like that character.  Brilliant.  Odd.  And interested in little else but his work.  He lived alone.  And died alone.  A bachelor.  Living in a two-room hotel room in the last decade of his life.  Despite his inventions that changed the world.  And the fortunes he made for others.  Sadly, Tesla did not die a rich man.  Like Edison and Westinghouse.  But he did live a long life.  And few men or women changed the world like he did.  A brilliant mind that comes around but once in a millennium.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

The Horse, Waterwheel, Steam Engine, Electricity, DC and AC Power, Power Transmission and Electric Motors

Posted by PITHOCRATES - December 21st, 2011

Technology 101

A Waterwheel, Shaft, Pulleys and Belts made Power Transmission Complex

The history of man is the story of man controlling and shaping our environment.  Prehistoric man did little to change his environment.  But he started the process.  By making tools for the first time.  Over time we made better tools.  Taking us into the Bronze Age.  Where we did greater things.  The Sumerians and the Egyptians led their civilization in mass farming.  Created some of the first food surpluses in history.  In time came the Iron Age.  Better tools.  And better plows.  Fewer people could do more.  Especially when we attached an iron plow to one horsepower.  Or better yet, when horses were teamed together to produce 2 horsepower.  3 horsepower.  Even 4 horsepower.  The more power man harnessed the more work he was able to do.

This was the key to controlling and shaping our environment.  Converting energy into power.  A horse’s physiology can produce energy.  By feeding, watering and resting a horse we can convert that energy into power.  And with that power we can do greater work than we can do with our own physiology.  Working with horse-power has been the standard for millennia.  Especially for motive power.  Moving things.  Like dragging a plow.  But man has harnessed other energy.  Such as moving water.  Using a waterwheel.  Go into an old working cider mill in the fall and you’ll see how man made power from water by turning a wheel and a series of belts and pulleys.  The waterwheel turned a main shaft that ran the length of the work area.  On the shaft were pulleys.  Around these pulleys were belts that could be engaged to transfer power to a work station.  Where it would turn another pulley attached to a shaft.  Depending on the nature of the work task the rotational motion of the main shaft could be increased or decreased with gears.  We could change it from rotational to reciprocating motion.  We could even change the axis of rotation with another type of gearing.

This was a great step forward in advancing civilization.  But the waterwheel, shaft, pulleys and belts made power transmission complex.  And somewhat limited by the energy available in the moving water.  A great step forward was the steam engine.  A large external combustion engine.  Where an external firebox heated water to steam.  And then that steam pushed a piston in a cylinder.  The energy in expanding steam was far greater than in moving water.  It produced far more power.  And could do far more work.  We could do so much work with the steam engine that it kicked off the Industrial Revolution.

Nikola Tesla created an Electrical Revolution using AC Power

The steam engine also gave us more freedom.  We could now build a factory anywhere we wanted to.  And did.  We could do something else with it, too.  We could put it on tracks.  And use it to pull heavy loads across the country.  The steam locomotive interconnected the factories to the raw materials they consumed.  And to the cities that bought their finished goods.  At a rate no amount of teamed horses could equal.  Yes, the iron horse ended man’s special relationship with the horse.  Even on the farm.  Where steam engines powered our first tractors.  Giving man the ability to do more work than ever.  And grow more food than ever.  Creating greater food surpluses than the Sumerians and Egyptians could ever grow.  No matter how much of their fertile river banks they cultivated.  Or how much land they irrigated.

Steam engines were incredibly powerful.  But they were big.  And very complex.  They were ideal for the farm and the factory.  The steam locomotive and the steamship.  But one thing they were not good at was transmitting power over distances.  A limitation the waterwheel shared.  To transmit power from a steam engine required a complicated series of belts and pulleys.  Or multiple steam engines.  A great advance in technology changed all that.  Something Benjamin Franklin experimented with.  Something Thomas Edison did, too.  Even gave us one of the greatest inventions of all time that used this new technology.  The light bulb.  Powered by, of course, electricity.

Electricity.  That thing we can’t see, touch or smell.  And it moves mysteriously through wires and does work.  Edison did much to advance this technology.  Created electrical generators.  And lit our cities with his electric light bulb.  Electrical power lines crisscrossed our early cities.  And there were a lot of them.  Far more than we see today.  Why?  Because Edison’s power was direct current.  DC.  Which had some serious drawbacks when it came to power transmission.  For one it didn’t travel very far before losing much of its power. So electrical loads couldn’t be far from a generator.  And you needed a generator for each voltage you used.  That adds up to a lot of generators.  Great if you’re in the business of selling electrical generators.  Which Edison was.  But it made DC power costly.  And complex.  Which explained that maze of power lines crisscrossing our cities.  A set of wires for each voltage.  Something you didn’t need with alternating current.  AC.  And a young engineer working for George Westinghouse was about to give Thomas Edison a run for his money.  By creating an electrical revolution using that AC power.  And that’s just what Nikola Tesla did.

Transformers Stepped-up Voltages for Power Transmission and Stepped-down Voltages for Electrical Motors

An alternating current went back and forth through a wire.  It did not have to return to the electrical generator after leaving it.  Unlike a direct current ultimately had to.  Think of a reciprocating engine.  Like on a steam locomotive.  This back and forth motion doesn’t do anything but go back and forth.  Not very useful on a train.  But when we convert it to rotational motion, why, that’s a whole other story.  Because rotational motion on a train is very useful.  Just as AC current in transmission lines turned out to be very useful.

There are two electrical formulas that explain a lot of these developments.  First, electrical power (P) is equal to the voltage (V) multiplied by the current (I).  Expressed mathematically, P = V x I.  Second, current (I) is equal to the voltage (V) divided by the electrical resistance (R).  Mathematically, I = V/R.  That’s the math.  Here it is in words.  The greater the voltage and current the greater the power.  And the more work you can do.  However, we transmit current on copper wires.  And copper is expensive.  So to increase current we need to lower the resistance of that expensive copper wire.  But there’s only one way to do that.  By using very thick and expensive wires.  See where we’re going here?  Increasing current is a costly way to increase power.  Because of all that copper.  It’s just not economical.  So what about increasing voltage instead?  Turns out that’s very economical.  Because you can transmit great power with small currents if you step up the voltage.  And Nikola Tesla’s AC power allowed just that.  By using transformers.  Which, unfortunately for Edison, don’t work with DC power.

This is why Nikola Tesla’s AC power put Thomas Edison’s DC power out of business.  By stepping up voltages a power plant could send power long distances.  And then that high voltage could be stepped down to a variety of voltages and connected to factories (and homes).  Electric power could do one more very important thing.  It could power new electric motors.  And convert this AC power into rotational motion.  These electric motors came in all different sizes and voltages to suit the task at hand.  So instead of a waterwheel or a steam engine driving a main shaft through a factory we simply connected factories to the electric grid.  Then they used step-down transformers within the factory where needed for the various work tasks.  Connecting to electric motors on a variety of machines.  Where a worker could turn them on or off with the flick of a switch.  Without endangering him or herself by engaging or disengaging belts from a main drive shaft.  Instead the worker could spend all of his or her time on the task at hand.  Increasing productivity like never before.

Free Market Capitalism gave us Electric Power, the Electric Motor and the Roaring Twenties

What electric power and the electric motor did was reduce the size and complexity of energy conversion to useable power.  Steam engines were massive, complex and dangerous.  Exploding boilers killed many a worker.  And innocent bystander.  Electric power was simpler and safer to use.  And it was more efficient.  Horses were stronger than man.  But increasing horsepower required a lot of big horses that we also had to feed and care for.  Electric motors are smaller and don’t need to be fed.  Or be cleaned up after, for that matter.

Today a 40 pound electric motor can do the work of one 1,500 pound draft horse.  Electric power and the electric motor allow us to do work no amount of teamed horses can do.  And it’s safer and simpler than using a steam engine.  Which is why the Roaring Twenties roared.  It was in the 1920s that this technology began to power American industry.  Giving us the power to control and shape our environment like never before.  Vaulting America to the number one economic power of the world.  Thanks to free market capitalism.  And a few great minds along the way.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,