Engine Block Heaters and Battery Heaters

Posted by PITHOCRATES - February 19th, 2014

Technology 101

As Matter loses Heat it shrinks from a Gas to a Liquid to a Solid

There is no such thing as cold.  Cold is simply the absence of heat.  Which is a real thing.  Heat.  It’s a form of energy.  Warm things have a lot of energy.  Cold things have less energy.  The Kelvin scale is a measurement of temperature.  Like degrees used when measuring temperature in Celsius or Fahrenheit.  Where 32 degrees Fahrenheit equals 0 degrees Celsius.  And 0 degrees Celsius equals 273.15 kelvin.  Not ‘degrees’ kelvin.  Just kelvin.

When something cools it loses heat energy.  The molecular activity slows down.  Steam has a lot of molecular activity.  At 212 degrees Fahrenheit (100 degrees Celsius or 373.15 kelvin) the molecular activity decreases enough (i.e., loses energy) that steam changes to water.  At 32 degrees Fahrenheit (0 degrees Celsius or 273.15 kelvin) the molecular activity decreases enough (i.e., loses energy) that water turns into ice.

The more heat matter loses the less molecules move around.  At absolute zero (0 kelvin) there is no heat at all.  And no molecular movement.  Making 0 kelvin the ‘coldest’ anything can be.  For 0 kelvin represents the absence of all heat.  As matter loses heat it shrinks.  Gases become liquid.  And liquids becomes solid.  (Water, however, is an exception to that rule.  When water turns into ice it expands.  And cracks our roadways.)  They become less fluid.  Or more viscous.  Cold butter is harder to spread on a roll than warm butter.  Because warm butter has more heat energy than cold butter.  So warm butter is less viscous than cold butter.

Vehicles in Sub-Freezing Temperatures can Start Easily if Equipped with an Engine Block Heater

In a car’s internal combustion engine an air-fuel mixture enters the cylinder.  As the piston comes up it compresses this mixture.  And raises its temperature.  When the piston reaches the top the air-fuel mixture is at its maximum pressure and temperature.  The spark plug then provides an ignition source to cause combustion.  (A diesel engine operates at such a high compression that the temperature rise is so great the air-fuel mixture will combust without an ignition source).  Driving the piston down and creating rotational energy via the crank shaft.

For this to happen a lot of things have to work together.  You need energy to spin the engine before the combustion process.  You need lubrication to allow the engine components to move without causing wear and tear.  And you need the air-fuel mixture to reach a temperature to burn cleanly and to extract as much energy from combustion as possible.  None of which works well in very cold temperatures.

Vehicles operating in sub-freezing temperatures need a little help.  Manufacturers equip many vehicles sold for these regions with engine block heaters.  These are heating elements in the engine core.  You’ll know a vehicle has one when you see an electrical cord coming out of the engine compartment.  When these engines aren’t running they ‘plug in’ to an electrical outlet.  A timer will cycle these heaters on and off.  Keeping the engine block warmer than the subfreezing temperatures.

The Internal Combustion Engine is Ideal for use in Cold Temperatures

At subfreezing temperatures engine oil because more viscous.  And more like tar.  This does not flow well through the engine.  So until it warms up the engine operates basically without any lubrication.  In ‘normal’ temperatures the oil heats up quickly and flows through the engine before there’s any damage.  At subfreezing temperatures oil needs a little help when starting.  So the oil sump is heated.  Like an engine block heater.  So when someone tries to start the engine the oil is more like oil and less like tar.

Of course, for any of this to help start an engine you have to be able to turn the engine over first.  And to do that you need a charged battery.  But even a charged battery needs help in sub-freezing temperatures.  For in these temperatures there is little molecular action in the battery.  And without molecular activity there will be little current available to power the engine’s starter.  So there are heaters for batteries, too.  Electric blankets or pads that sit under or wrap around a battery.  To warm the battery to let the chemicals inside move around more freely.  So they can produce the electric power it needs to turn an engine over on a cold day.

Once an engine block, the engine oil and battery are sufficiently warmed by external electric power the engine can start.  Once it warms up it can operate like it can at less frigid temperatures.  The engine alternator powers the electrical systems on the vehicle.  And recharges the battery.  The engine coolant heats up and provides heat for the passenger compartment.  And defrosts the windows.  Once the engine is warm it can shut down and start again an hour or so later with ease.  Making it ideal for use in cold temperatures.  Unlike an electric car.  For the colder it gets the less energy its batteries will have.  Making it a risky endeavor to drive to the store in the Midwest or the Northeast during a winter such as this.  Something people should think about before buying an all-electric car.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , ,

Waterwheel, Rotational Motion, Reciprocal Motion, Steam Engine, Internal Combustion Engine and Hydraulic Brakes

Posted by PITHOCRATES - December 5th, 2012

Technology 101

To Keep People on Trains they Undercharge Passengers and make up the Difference with Government Subsidies

We built some of our first factories on or near a river.  Where we could use that river’s current to turn a waterwheel.  To provide a rotational motion that could do work for us.  We transmitted that rotational motion via a main drive shaft through a factory where it could drive machinery via belts and pulleys.  Once we developed the steam engine to provide that rotational motion we could move our factories anywhere.  Not just on or near a river.  Giving us greater freedom.  And permitting greater economic growth.  As we put those steam engines onto rails.  That transported freight and people all across the country.

Trains are nice.  But expensive.  To go anywhere on a train you need train tracks going there.  But train tracks are incredibly expensive to lay.  And maintain.  If you ever stared at a set of train tracks you probably noticed something.  There aren’t a lot of trains going by on them.  When a train stops you when you’re running late or bringing home dinner it may feel like trains are always stopping you.  But if you parked at those same tracks for a few hours you wouldn’t see a lot of trains.  Because even the most polished rails (the more train traffic the more polished the rails) are unused more than they are used.

This is why trains are very expensive.  Tracks cost a lot of money to lay and maintain.  Costs that a railroad has to recoup from trains using those rails.  And when you don’t have a lot of trains on those rails you have to charge a lot for the trains that do travel on them.  A mile-long train pulling heavy freight can pay a lot of revenue.  And make a railroad profitable.  But passenger trains are not a mile long.  And carry few people.  Which means to make money on a passenger train you’d have to charge more for a ticket than people would pay.  To keep people on trains, then, they have to undercharge passengers.  And make up the difference with government subsidies.

A Crank Shaft and Combustion Timing takes Reciprocal Motion of Pistons and Converts it into Rotational Motion

This is why people drive places instead of taking the train.  It’s far less expensive to take the car.  And there are roads everywhere.  Built and maintained by gas taxes, licenses and fees.  And if you’ve ever driven on a road you probably noticed that there are a lot of cars, motorcycles, trucks and buses around you.  With so many vehicles on the roads they each can pay a small amount to build and maintain them.  Which is something the railroads can’t do.  Only trains can travel on train tracks.  But cars, motorcycles, trucks and buses can all travel on roads.  This is why driving a car is such a bargain.  Economies of scale.

To operate a train requires a massive infrastructure.  Dispatchers control the movement of every train.  Tracks are broken down into blocks.  The dispatchers allow only one train in a block at a time.  They do this for a couple of reasons.  Trains don’t have steering wheels.  And can take up to a mile to stop.  So to operate trains safely requires keeping them as far apart from each other as possible.  Traveling on roads is a different story.  There are no dispatchers separating traffic.  Cars, motorcycles, trucks and buses travel very close together.  Starting and stopping often.  Traveling up to high speeds between traffic lights.  With motorcycles and cars weaving in and out among trucks and buses.  Avoiding traffic and accidents by speeding up and slowing down.  And steering.

Driving a car today is something just about anyone 16 and older can do.  Thanks to the remarkable technology that makes a car.  Starting with the internal combustion engine.  The source of power that makes everything possible.  Just like those early waterwheels the source of that power is rotational motion.  But instead of a river providing the energy an internal combustion engine combusts gasoline to push pistons.  A crank shaft and combustion timing takes that reciprocal motion of the pistons and converts it into rotational motion.  Spinning a drive shaft that provides power to drive the car.  As well as power all of its accessories.

The Friction of Brake Shoe or Pad on Steel slows the Car converting Kinetic Energy into Heat

The first cars required a lot of man-power.  It took great strength to rotate the hand-crank to start the engine.  Sometimes the engine would spit and cough.  And kick back.  Breaking the occasional wrist.  Once started it took some leg-power to depress the clutch to shift gears.  It took a little upper body strength to turn the steering wheel.  And some additional leg-power to apply the brakes to stop the car.  In time we replaced the hand-crank with the electric starter.  We replaced the clutch and gearbox with the automatic transmission.  We added power steering and power breaks to further reduce the amount of man-power needed to drive a car.  Today a young lady in high heels and a miniskirt can drive a car as easily and as expertly as the first pioneers who risked bodily harm to drive our first cars.

The internal combustion engine can spin a crankshaft very fast and accelerate a car to great speeds.  Which is good for darting in and out of traffic.  But traffic occasional has to stop.  Which is easier said than done.  For a heavy car moving at speed has a lot of kinetic energy.  You can’t destroy energy.  You can only convert it.  And in the case of slowing down a car you have to convert that kinetic energy into heat.  When you press the brake pedal you force hydraulic fluid from a master cylinder to small cylinders at each wheel.  As fluids cannot compress when you apply a force to the fluid that force is transmitted to something than can move.  In the case of stopping a car it is either a brake shoe that presses against the inside of the car’s wheels.  Or a caliper that clamps down on a disc.  The friction of brake shoe or pad on steel slows the car.  Converting that kinetic energy into heat.  In some cases of excessive braking (on a train or a plane) the heat can be so excessive that the wheels or discs glow red.

So as the internal combustion engine and the brakes play their little games of speeding up and slowing down a car the rotational power of the crankshaft drives other accessories.  Such as power steering.  Where a belt and pulley transfers that rotational power to a power steering pump.  The pump pushes fluid to the steering gear to assist in turns.  Another belt and pulley connects an alternator to the crankshaft to produce electricity to provide power for the car’s electrical systems.  And to charge the battery so it can spin the automatic starter.  Another belt and pulley connects another compressor to the crankshaft.  This one for air conditioning.  That allows us to alight from our cars shower-fresh on the hottest and most humid days of the year.  And, finally, antifreeze removes the heat of combustion from the internal combustion engine and transfers it to a heating core inside the passenger compartment.  Allowing a warm and comfortable drive home during the coldest of days.  As well as keeping our windows free of snow and ice so we can see to drive safely on our way home.  Through bumper to bumper traffic.  Something we do day after day with the ease of doing the laundry.  Thanks to the remarkable technology that we take for granted that makes a car.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , ,

Windmills, Waterwheels, Steam Engine, Electric Power, Coal, Heat Engine, Steam Turbine, Generator and Coal-Fired Power Plant

Posted by PITHOCRATES - July 11th, 2012

Technology 101

By burning Coal to Boil Water into Steam to Move a Piston we could Build a Factory Anywhere

We created advanced civilization by harnessing energy.  And converting this energy into working power.  Our first efforts were biological.  Feeding and caring for large animals made these animals strong.  Their physiology converted food and water into strong muscles and bones.  Allowing them to pull heavy loads.  From plowing.  To heavy transportation.  To use in construction.  Of course the problem with animals is that they’re living things.  They eat and drink.  And poop and pee.  Causing a lot of pollution in and around people.  Inviting disease.

As civilization advanced we needed more energy.  And we found it in wind and water.  We built windmills and waterwheels.  To capture the energy in moving wind and moving water.  And converted this into rotational motion.  Giving us a cleaner power source than working animals.  Power that didn’t have to rest or eat.  And could run indefinitely as long as the wind blew and the water flowed.  Using belts, pulleys, cogs and gears we transferred this rotational power to a variety of work stations.  Of course the problem with wind and water is that you needed to be near wind and water.  Wind was more widely available but less reliable.  Water was more reliable but less widely available.  Each had their limitations.

The steam engine changed everything.  By burning a fuel (typically coal) to boil water into steam to move a piston we could build a factory anywhere.  Away from rivers.  And even in areas that had little wind.  The reciprocating motion of the piston turned a wheel to convert it into rotational motion.  Using belts, pulleys, cogs and gears we transferred this rotational power to a variety of work stations.  This carried us through the Industrial Revolution.  Then we came up with something better.  The electric motor.  Instead of transferring rotational motion to a workstation we put an electric motor at the work station.  And powered it with electricity.  Using electric power to produce rotational motion at the workstation.  Electricity and the electric motor changed the world just as the steam engine had changed the world earlier.  Today the two have come together.

You can tell a Power Plant uses a Scrubber by the White Steam puffing out of a Smokestack

Coal has a lot of energy in it.  When we burn it this energy is transformed into heat.  Hot heat.  For coal burns hot.  The modern coal-fired power plant is a heat engine.  It uses the heat from burning coal to boil water into steam.  And as steam expands it creates great pressure.  We can use this pressure to push a piston.  Or turn a steam turbine.  A rotational device with fins.  As the steam pushes on these fins the turbine turns.  Converting the high pressure of the steam into rotational motion.  We then couple this rotational motion of the steam turbine to a generator.  Which spins the generator to produce electricity.

Coal-fired power plants are hungry plants.  A large plant burns about 1,000 tons of coal an hour.  Or about 30,000 pounds a minute.  That’s a lot of coal.  We typically deliver coal to these plants in bulk.  Via Great Lakes freighters.  River barges.  Or unit trains.  Trains made up of nothing but coal hopper cars.  These feed coal to the power plants.  They unload and conveyor systems take this coal and create big piles.  You can see conveyors rising up from these piles of coal.  These conveyors transport this coal to silos or bunkers.  Further conveyor systems transfer the coal from these silos to the plant.  Where it is smashed and pulverized into a dust.  And then it’s blown into the firebox, mixed with hot air and ignited.  Creating enormous amounts of heat to boil an enormous amount of water.  Creating the steam to turn a turbine.

Of course, with combustion there are products left over.  Sulfur impurities in the coal create sulfur dioxide.  And as the coal burns it leaves behind ash.  A heavy ash that falls to the bottom of the firebox.  Bottom ash.  And a lighter ash that is swept away with the flue gases.  Fly ash.  Filters catch the fly ash.  And scrubbers use chemistry to remove the sulfur dioxide from the flue gases.  By using a lime slurry.  The flue gases rise through a falling mist of lime slurry.  They chemically react and create calcium sulfate.  Or Gypsum.  The same stuff we use to make drywall out of.  You can tell a power plant uses a scrubby by the white steam puffing out of a smokestack.  If you see great plumes puffing out of a smokestack there’s little pollution entering the atmosphere.  A smokestack that isn’t puffing out a plume of white steam is probably spewing pollution into the atmosphere.

Coal is a Highly Concentrated Source of Energy making Coal King when it comes to Electricity

When the steam exits the turbines it enters a condenser.  Which cools it and lowers its temperature and pressure.  Turning the steam back into water.  It’s treated then sent back to the boiler.  However, getting the water back into the boiler is easier said than done.  The coal heats the water into a high pressure steam.  So high that it’s hard for anything to enter the boiler.  So this requires a very powerful pump to overcome that pressure.  In fact, this pump is the biggest pump in the plant.  Powered by electric power.  Or steam.  Sucking some 2-3 percent of the power the plant generates.

Coupled to the steam turbine is a power plant’s purpose.  Generators.  Everything in a power plant serves but one purpose.  To spin these generators.  And when they spin they generate a lot of power.  Producing some 40,000 amps at 10,000 to 30,000 volts at a typical large plant.  Multiplying current by power and you get some 1,200 MW of power.  Which can feed a lot of homes with 100 amp, 240 volt services.  Some 50,000 with every last amp used in their service.  Or more than twice this number under typical loads.  Add a few boilers (and turbine and generator sets) and one plant can power every house and business across large geographic areas in a state.  Something no solar array or wind farm can do.  Which is why about half of all electricity produced in the U.S. is generated by coal-fired power plants.

Coal is a highly concentrated source of energy.  A little of it goes a long way.  And a lot of it produces enormous amounts of electric power.  Making coal king when it comes to electricity.  There is nothing that can match the economics and the logistics of using coal.  Thanks to fracking, though, natural gas is coming down in price.  It can burn cleaner.  And perhaps its greatest advantage over coal is that we can bring a gas-fired plant on line in a fraction amount of the time it takes to bring a coal-fired plant on line.  For coal-fired plants are heat engines that boil water into steam to spin turbines.  Whereas gas-fired plants use the products of combustion to spin their turbines.  Utilities typically use a combination of coal-fired and gas-fired plants.  The coal-fired plants run all of the time and provide the base load.  When demand peaks (when everyone turns on their air conditioners in the evening) the gas-fired plants are brought on line to meet this peak demand.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , ,

Carbon, Carbon Cycle, Crude Oil, Petroleum, Hydrocarbons, Oil Refinery, Cracking, Sweet Crude, Sour Crude, Gasoline and Diesel Engines

Posted by PITHOCRATES - April 25th, 2012

Technology 101

Crude Oil is made from Long Chains of Carbon Atoms Bonded Together with a lot of Hydrogen Atoms Attached Along the Way

Carbon.  It’s everywhere.  And in everything.  Like all matter it cannot be created.  Or destroyed.  It just changes.  As it creates the circle of life.  The carbon cycle.  Plants and trees absorb carbon out of the atmosphere.  And converts it into biomass.  Into wood.  And into animal food.  Where the digestive system converts it into carbon-based living flesh and blood.  That exhales carbon.  Plants absorb carbon and release oxygen.  Plants can’t grow without carbon.  And we can’t breathe without plants growing.  Carbon is constantly changing.  But never created.  Or destroyed.  From diamonds to pencils.  From sugar to carbonated soda.  From plastics to human beings.  It’s everywhere.  And everything.  Why, it’s life itself.

Carbon is a time traveler.  Carbon that once traveled through the atmosphere disappeared millions of years ago.  Buried underneath the surface of the earth.  Under intense heat and pressure.  Plankton and algae and other biomasses decayed until there was almost nothing left but carbon atoms.  Long chains of carbon atoms.  Forming great, restless pools of black goo beneath the surface.   Waiting for the modern world to arrive.  Waiting for the internal combustion engine.  The jet engine.  And plastics.  When they could be reborn.  And see the light of day again.

Crude oil.  Petroleum.  Black gold.  Texas tea.  Hydrocarbons.  Long chains of carbon atoms bonded together with a lot of hydrogen atoms attached along the way.  In the ground they’re mostly long chains.  When we get them above ground we can break those chains into different lengths.  And create many different things.  C16H34 (hexadecane).  C9H20 (nonane).  C8H18 (octane).  C7H16 (heptane).  C5H12 (pentane).  C4H10 (butane).  C6H6 (benzene).  CH4 (methane).  Some of these you may be familiar with.  Some you may not.  Methane is a flammable gas.  Hydrocarbon chains from pentane to octane make gasoline.  Hydrocarbon chains from nonane to hexadecane make diesel fuel, kerosene and jet fuel.  Chains with more carbon atoms make lubricants.  Chains with even more carbon atoms make asphalt.  While chains with 4 carbon atoms or less make gases.  All these things made from the same black goo.  A true marvel of Mother Nature.  Or God.  Depending on your inclination.

Older Coastal Refineries make more Expensive Gasoline than the Newer Refineries due to the Availability of Sweet versus Sour Crude

Another great carbon-based product it bourbon.  Made from a corn sour mash.  We heat this and the alcohol in it boils off.  That is, we distill it.  We run this gas through a coiling coil and it condenses back into a liquid.  And after a few more steps we get delicious bourbon whiskey.  Distilleries give tours.  If you get a chance you should take one.  You won’t get to sample any of the distilled spirits (insurance reasons).  But you will get a feel for what an oil refinery is.

An oil refinery works on the same principles.  Boil and condense.  And cracking.  Cracking those long hydrocarbon chains apart into all those different chains.  Long and small.  Into liquids and gases.  Even solid lubricants and asphalt.  All made possible because of their different boiling points.  The gases having lower boiling points.  The solids having higher boiling points.  And the liquids having boiling points somewhere in between.

Refineries are complex processing plants.  Not only because of all those different hydrocarbon chains.  But because of the crude oil introduced to these plants.  For there is light sweet crude.  And heavier sour crude.  The difference being the additional stuff that we need to remove.  Such as sulfur.  An environmental problem.  So we have to remove as much of it as possible during the refining process to meet EPA standards.  The sweet crudes are lower in sulfur.  Making them the crude of choice.  But this has also been the most popular crude through the years.  So its resources are dwindling.  Making it more expensive.  As are all the products refined from it.  Especially gasoline.  The more sour crudes have higher sulfur content.  And require more refining steps to remove that sulfur.  Which means additional refinery equipment.  So the older refineries that were refining the light sweet crude can’t refine the heavier sour crudes.  Which is why the refineries along the coasts make more expensive gasoline than the newer ones in the interior refining the heavier sour crudes.  Due to the availability of sweet crude versus sour crude.

The Modern World is brought to us by a Complex Economy which is brought to us by Petroleum

One of the main uses of refined crude oil is fuel for internal combustion engines.  In particular, gasoline engines and diesel engines.  Which are very similar.  The difference being the mode of ignition.  And, of course, the fuel.  Gasoline engines compress an air-fuel mixture in the cylinder.  At the top of the compression stroke a spark plug ignites this highly compressed and heated mixture.  Sending the piston down.  If the combustion occurs too early it could place undo stresses on the piston connecting rods and the crank shaft.  By trying to send the piston down when it was coming up.  Causing a knocking sound.  Which is a bad sound to hear.  And if you hear it you should probably make sure you’re using the right gasoline.  If you are you need to have you car serviced.  Because continued knocking may break something.  And if it does your engine will work no more.  So this is where octane comes in the blending of gasoline.  It’s expensive.  But the more of it in gasoline the higher the compression you can have.  And the less knocking.  Which is its only purpose.  It doesn’t give you any more power.  The higher compression does.  Which the higher octane allows.  Using the higher octane gas in a standard compression engine won’t do anything but waste your hard earned money.

And speaking of higher compression engines, that brings us to diesel engines.  Which are similar to gasoline engines only they operate under a higher compression.  And don’t use spark plugs.  These engines compress air only.  Which allows the higher compression without pre-ignition.  At the top of their compression stroke a fuel injector squirts diesel fuel into the hot compressed air where it combusts on contact.  Diesel fuel has a higher energy content than gasoline.  Meaning for the same volume of fuel diesel can take you further than gasoline.  Which is why trucks, locomotives and ships use diesel.  But diesel tends to pollute more.  The smell and the soot kept diesel out of our cars for a long time.  As well as the difficulty of starting in cold climates.  Advanced computer controlled systems have helped, though, and we’re seeing more diesel used in cars now.

The modern world is brought to us by a complex economy.  Where goods and raw materials traverse the globe.  To feed our industries.  And to ship our finished goods.  Which we put on trucks, trains, ships and airplanes.  None of which would be possible without a portable, stable, energy-dense fuel.  That only refined petroleum can give us.  It’s better than animal power.  Water power.  Wind power.  Or steam power.  For there is nothing that we can use in our trucks, trains, ships and airplanes other than refined petroleum products today that wouldn’t be a step backwards in our modern world.  Nothing.  Making petroleum truly a marvel of Mother Nature.  Or God.  Depending on your inclination.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,