Air Transport vs. Rail Transport

Posted by PITHOCRATES - July 29th, 2013

Economics 101

Trains require an Enormous Amount of Infrastructure between Terminal Points whereas a Plane does Not

Trains and jets are big and expensive.  And take huge sums of money to move freight and passengers.  Each has their strength.  And each has their weakness.  Planes are great for transporting people.  While trains are best for moving heavy freight.  They both can and do transport both.  But pay a premium when they are not operating at their strength.

The big difference between these two modes of transportation is infrastructure.  Trains require an enormous amount of infrastructure between terminal points.  Whereas a plane doesn’t need anything between terminal points.  Because they fly in the air.  But because they fly in the air they need a lot of fuel to produce enough lift to break free from the earth’s gravity.  Trains, on the other hand, don’t have to battle gravity as much.  As they move across the ground on steel rails.  Which offer little resistance to steel wheels.  Allowing them to pull incredible weights cross country.  But to do that they need to build and maintain very expensive train tracks between point A and point B.

To illustrate the difference in costs each incurs moving both people and freight we’ll look at a hotshot freight train and a Boeing 747-8.  A hotshot freight gets the best motive power and hustles on the main lines across the country.  The Boeing 747-8 is the latest in the 747 family and includes both passenger and freighter versions.  The distance between Los Angeles (LA) and New York City (NYC) is approximately 2,800 miles.  So let’s look at the costs of each mode of transportation moving both people and freight between these two cities.

Railroads are so Efficient at moving Freight because One Locomotive can pull up to 5,000 Tons of Freight

There are many variables when it comes to the cost of building and maintaining railroad track.  So we’re going to guesstimate a lot of numbers.  And do a lot of number crunching.  An approximate number for the cost per mile of new track is $1.3 million.  That includes land, material and labor.  So the cost of the track between LA and NYC is $3.6 billion.  Assuming a 7-year depreciation schedule that comes to $1.4 million per day.  If it takes 3 days for a hotshot freight to travel from LA to NYC that’s $4.3 million for those three days.  Of course, main lines see a lot of traffic.  So let’s assume there are 8 trains a day for a total of 24 trains during that 3-day period.  This brings the depreciation expense for that trip from LA to NYC down to $178,082.

So that’s the capital cost of those train tracks between point A and point B.  Now the operating costs.  An approximate number for annual maintenance costs per mile of track is $300,000.  So the annual cost to maintain the track between LA and NYC is $840 million.  Crunching the numbers the rest of the way brings the maintenance cost for that 3-day trip to approximately $278,671.  Assuming a fuel consumption of 4 gallons per mile, a fuel cost of $3/gallon and a lashup of 3 locomotives the fuel cost for that 3-day trip is approximately $100,800.  Adding the capital cost, the maintenance expense and the fuel costs brings the total to $566,553.  With each locomotive being able to pull approximately 5,000 tons of freight for a total of 15,000 tons brings the cost per ton of freight shipped to $37.77.

Now let’s look at moving people by train.  People are a lot lighter than heavy freight.  So we can drop one locomotive in the lashup.  And burn about a gallon less per mile.  Bringing the fuel cost down from $100,800 to $50,400.  And the total cost to $516,153.  Assuming these locomotives pull 14 Amtrak Superliners (plus a dining car and a baggage car) that’s a total of 1,344 passengers (each Superliner has a 96 passenger maximum capacity).  Dividing the cost by the number of passengers gives us a cost of $384.04 per passenger.

Passenger Rail requires Massive Government Subsidies because of the Costs of Building and Maintaining Track

A Boeing 747-8 freighter can carry a maximum 147.9 tons of freight.  While consuming approximately 13.7 gallons of jet fuel per mile.  At 2,800 miles that trip from LA to NYC will consume about 38,403 gallons of jet fuel.  At $3/gallon that comes to a $115,210 total fuel cost.  Or $778.97 per ton.  Approximately 1,962% more than moving a ton of freight from LA to NYC by train.  Excluding the capital costs of locomotives, rolling stock, airplanes, terminal infrastructure/fees, etc.  Despite that massive cost of building and maintaining rail between point A and point B the massive tonnage a train can move compared to what a plane can carry makes the train the bargain when moving freight.  But it’s a different story when it comes to moving people.

The Boeing 747-8 carries approximately 467 people on a typical flight.  And burns approximately 6.84 gallons per mile.  Because people are a lot lighter than freight.  Crunching the numbers gives a cost per passenger of $123.11.  Approximately 212% less than what it costs a train to move a person.  Despite fuel costs being almost the same.  The difference is, of course, the additional $465,753 in costs for the track running between LA and NYC.  Which comes to $346.54 per passenger.  Or about 90% of the cost/passenger.  Which is why there are no private passenger railroads these days.  For if passenger rail isn’t heavily subsidized by the taxpayer the price of a ticket would be so great that no one would buy them.  Except the very rich train enthusiast.  Who is willing to pay 3 times the cost of flying and take about 12 times the time of flying.

There are private freight railroads.  Private passenger airlines.  And private air cargo companies.  Because they all can attract customers without government subsidies.  Passenger rail, on the other hand, can’t.  Because of the massive costs to build and maintain railroad tracks.  With high-speed rail being the most expensive track to build and maintain.  Making it the most cost inefficient way to move people.  Requiring massive government subsidies.  Either for the track infrastructure.  Or the electric power that powers high-speed rail.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , ,

A Solar Powered Plane is an Engineering Marvel but it won’t Fly you Anywhere

Posted by PITHOCRATES - March 9th, 2013

Week in Review

The Boeing 747-8 is the latest derivative of the 747 family.  It can seat up to 465 people.  And has a gross takeoff weight of 975,000 pounds.  It’s cruising speed is 570 mph.  And has a range of 9,210 miles at maximum take-off weight.  Which means it could fly between California and New York in about 4 and a half hours.  The Boeing 747-8 is truly a remarkable aircraft.  But how does it measure up to other aircraft?  Well, here’s one with a similar wingspan (see Solar-Powered Plane To Make Cross-U.S. Flight by Jesse Emspak posted 3/4/2013 on Discovery News).

A plane that can fly on solar power, day or night, will make its way across the United States this summer — the first time the plane has attempted a cross-continental flight.

Wow.  Can it be the environmentalist were right all along?  That we can replace fossil fuels with solar power?  Well, this appears to be the proof.  A plane that can fly cross-continental.  Day or night.  Why, this can revolutionize air travel.  And put a serious crimp in global warming.  For as great as the 747-8 is it still burns a heck of a lot of jet fuel.  Putting a lot of emissions into the air.  Perhaps this is the future of aviation.  Clean solar power.  Perhaps with some minor adjustments required in our travel plans.  But if it saves the planet perhaps those minor adjustments will be worth it.

The Solar Impulse — built as a project of the Swiss Federal Institute of Technology, the brainchild of Bertrand Piccard and André Borschberg — has the wingspan of a 747 but only weighs as much a Honda Prius. It flies thanks to four turboprop engines powered entirely by batteries and solar panels.

Borschberg told Discovery News that the although the plane could make the whole trip from California to New York in one go, the pilot cannot. The plane travels at 40 to 50 miles per hour, so a cross-country flight would take days. And since there’s only room for a single person in the cockpit, in part to save weight, and no autopilot, the trip will have to be broke up into five legs…

The solar panels are conventional silicon, with an efficiency of about 25 percent. While there are more efficient solar panels such as those used in the satellite industry, those designs are often too heavy, Borschberg said, as they tend to be encased in glass. And although the power is stored in batteries, the engines can run directly from the energy collected by the solar panels. In fact, the plane could be flown on an empty battery.

A 747-8 at maximum take-off weight weighs the same as about 321 Honda Prius hybrids.  And it includes galleys.  And toilets.  So it can stay in the air and fly almost anywhere in the world nonstop.  While the Solar Impulse currently can’t carry any passengers, has no galley and no toilets.  Which may allow about three flights of 4-5 hours a day.  Allowing it to arrive in New York after leaving California some 6 days earlier.

So solar power is not a viable alternative to fossil fuel if we want to fly anywhere.  As remarkable as the Solar Impulse is, and it is truly remarkable, it is only an engineering marvel.  For there is no way that solar power can provide sufficient thrust to carry great weights into the air.  Solar power can work in weightless space for they only have to power electric loads.  They don’t have to provide any thrust to move a heavy mass.

This is a large-scale example showing the limitations of electric-powered transportation.  For transportation to be useful it must be able to move heavy weights.  But the more useful the transport vehicle (the greater the weight it can move) the more battery charge is used for motive power.  Drawing down the battery charge faster (which is drawn down even faster if lights, heat, radio and other electric accessories are used).  Reducing range.  And usefulness.  Leaving the fossil fuel-powered vehicle the only viable vehicle in the foreseeable future.

www.PITHOCRATES.com

Share

Tags: , , , , , , ,