On the Flightdeck during Aviation Disasters

Posted by PITHOCRATES - March 19th, 2014

Technology 101

USAir Flight 427 on Approach to Pittsburgh flew through Wake Vortex and Lost Control

Malaysian Airlines Flight 370 search is still ongoing.  We’re seemingly no closer to understanding what happened than before.  There has been a lot of speculation.  And rebuttals to that speculation.  With many people saying things like why didn’t the crew radio?  Why didn’t they report a problem?  While others are saying that it is proof for their speculative theory.  That they were either under duress, had no time or were in on it and, therefore, went silent.  So what is it like on the flightdeck when something happens to an aircraft?  Well, because of past CVR (cockpit voice recorder) transcripts from previous accidents, we can get an idea.

On September 8, 1994, USAir Flight 427 flew into the wake vortex (little tornados trailing from a large plane’s wingtip) of a Delta Airlines Boeing 727 ahead of it.  This sideways tornado disrupted the airflow over the control surfaces of the USAir 737.  Disrupting it from level flight, causing it to roll left.  The autopilot tried to correct the roll as the 737 passed through the wake vortex core.  Causing more disruption of the airflow over the control surfaces.  The first officer then tried to stabilize the plane.  Control of the aircraft continued to deteriorate.  We pick up the CVR transcript just before this event (see 8 September 1994 – USAir 427).  CAUTION: The following recounts the final moments of Flight 427 and some may find it disturbing.

CAM-1 = Captain
CAM-2 = First Officer
CAM-3 = Cockpit Area Mike (cabin sounds and flight attendants)
RDO-1 = Radio Communications (Captain)
APP: Pittsburgh Approach

APP: USAir 427, turn left heading one zero zero. Traffic will be one to two o’clock, six miles, northbound Jetstream climbing out of thirty-three for five thousand.
RDO-1: We’re looking for the traffic, turning to one zero zero, USAir 427.
CAM-3: [Sound in engines increasing rpms]
CAM-2: Oh, yeah. I see the Jetstream.
CAM-1: Sheez…
CAM-2: zuh?
CAM-3: [Sound of thump; sound like ‘clickety-click’; again the thumping sound, but quieter than before]
CAM-1: Whoa … hang on.
CAM-3: [Sound of increasing rpms in engines; sound of clickety-click; sound of trim wheel turning at autopilot trim speed; sound similar to pilot grunting; sound of wailing horn similar to autopilot disconnect warning]
CAM-1: Hang on.
CAM-2: Oh, Shit.
CAM-1: Hang on. What the hell is this?
CAM-3: [Sound of stick shaker; sound of altitude alert]
CAM-3: Traffic. Traffic.
CAM-1: What the…
CAM-2: Oh…
CAM-1: Oh God, Oh God…
APP: USAir…
RDO-1: 427, emergency!
CAM-2: [Sound of scream]
CAM-1: Pull…
CAM-2: Oh…
CAM-1: Pull… pull…
CAM-2: God…
CAM-1: [Sound of screaming]
CAM-2: No… END OF TAPE.

At 19:03:01 in the flight there was a full left rudder deflection.  The plane yawed (twisted like a weathervane) to the left.  A second later it rolled 30 degrees left.  This caused the aircraft to pitch down.  Where it continued to roll.  The plane rolled upside down and pitched further nose-down.  The pilots never recovered.  The plane flew nearly straight into the ground at 261kts.  The crash investigated focused on the rudder.  Boeing redesigned it.  Pilots since have received more training on rudder inputs.  And flight data recorders now record additional rudder data.  This incident shows how fast a plane can go from normal flight to a crash.  The captain had time to radio one warning.  But within seconds from the beginning of the event the plane crashed.  Illustrating how little time pilots have to identify problems and correct them.

An In-Flight Deployment of a Thrust Reverser breaks up Lauda Air Flight 004

A plane wants to fly.  It is inherently stable.  As long as enough air flows over its wings.  Jet engines provide thrust that push an airplane’s wings through the air.  The curved surfaces of the wings interacting with the air passing over it creates lift.  As long as a plane’s jet engines push the wing through the air a plane will fly.  On May 26, 1991, something happened to Lauda Air Flight 004 to disrupt the smooth flow of air over the Boeing 767’s wings.  Something that isn’t supposed to happen during flight.  But only when a plane lands.  Reverse thrust.  As a plane lands the pilot reverses the thrust on the jet engines to slow the airplane.  Unfortunately for Flight 004, one of its jet engines deployed its thrust reverser while the plane was at about 31,000 feet.  We pick up the CVR transcript just as they receive a warning indication that the reverse thruster could deploy (see 26 May 1991 – Lauda 004).  CAUTION: The following recounts the final moments of Flight 004 and some may find it disturbing.

23.21:21 – [Warning light indicated]

23.21:21 FO: Shit.

23.21:24 CA: That keeps, that’s come on.

23.22:28 FO: So we passed transition altitude one-zero-one-three

23.22:30 CA: OK.

23.23:57 CA: What’s it say in there about that, just ah…

23.24:00 FO: (reading from quick reference handbook) Additional system failures may cause in-flight deployment. Expect normal reverse operation after landing.

23.24:11 CA: OK.

23.24:12 CA: Just, ah, let’s see.

23.24:36 CA: OK.

23.25:19 FO: Shall I ask the ground staff?

23.25:22 CA: What’s that?

23.25:23 FO: Shall I ask the technical men?

23.25:26 CA: Ah, you can tell ’em it, just it’s, it’s, it’s, just ah, no, ah, it’s probably ah wa… ah moisture or something ’cause it’s not just, oh, it’s coming on and off.

23.25:39 FO: Yeah.

23.25:40 CA: But, ah, you know it’s a … it doesn’t really, it’s just an advisory thing, I don’t ah …

23.25:55 CA: Could be some moisture in there or somethin’.

23.26:03 FO: Think you need a little bit of rudder trim to the left.

23.26:06 CA: What’s that?

23.26:08 FO: You need a little bit of rudder trim to the left.

23.26:10 CA: OK.

23.26:12 CA: OK.

23.26:50 FO: (starts adding up figures in German)

23.30:09 FO: (stops adding figures)

23.30:37 FO: Ah, reverser’s deployed.

23.30:39 – [sound of snap]

23.30:41 CA: Jesus Christ!

23.30:44 – [sound of four caution tones]

23.30:47 – [sound of siren warning starts]

23.30:48 – [sound of siren warning stops]

23.30:52 – [sound of siren warning starts and continues until the recording ends]

23.30:53 CA: Here, wait a minute!

23.30:58 CA: Damn it!

23.31:05 – [sound of bang]

[End of Recording]

The 767 Emergency/Malfunction Checklist stated that upon receiving the warning indicator ADDITIONAL system faults MAY cause an in-flight deployment of the thrust reverser.  But that one warning indication was NOT expected to cause any problem with the thrust reversers in stopping the plane after landing.  At that point it was not an emergency.  So they radioed no emergency.  About 10 minutes later the thrust reverser on the left engine deployed in flight.  When it did the left engine pulled the left wing back as the right engine pushed the right wing forward.  Disrupting the airflow over the left wing.  Causing it to stall.  And the twisting force around the yaw axis created such great stresses on the airframe that the aircraft broke up in the air.  The event happened so fast from thrust reverser deployment to the crash (less than 30 seconds) the crew had no time to radio an emergency before crashing.

Fire in the Cargo Hold brought down ValuJet Flight 592

One of the most dangerous things in aviation is fire.  Fire can fill the plane with smoke.  It can incapacitate the crew.  It can burn through electric wiring.  It can burn through control cables.  And it can burn through structural components.  A plane flying at altitude must land immediately on the detection of fire/smoke.  Because they can’t pull over and get out of the plane.  They have to get the plane on the ground.  And the longer it takes to do that the more damage the fire can do.  On May 11, 1996, ValuJet Flight 592 took off from Miami International Airport.  Shortly into the flight they detected smoke inside the McDonnell Douglas DC-9.  We pick up the CVR transcript just before they detected fire aboard (see 11 May 1996 – ValuJet 591).  CAUTION: The following recounts the final moments of Flight 592 and some may find it disturbing.

CAM — Cockpit area microphone voice or sound source
RDO — Radio transmissions from Critter 592
ALL — Sound source heard on all channels
INT — Transmissions over aircraft interphone system
Tower — Radio transmission from Miami tower or approach
UNK — Radio transmission received from unidentified source
PA — Transmission made over aircraft public address system
-1 — Voice identified as Pilot-in-Command (PIC)
-2 — Voice identified as Co-Pilot
-3 — Voice identified as senior female flight attendant
-? — Voice unidentified
* — Unintelligible word
@ — Non pertinent word
# — Expletive
% — Break in continuity
( ) — Questionable insertion
[ ] — Editorial insertion
… — Pause

14:09:36 PA-2 flight attendants, departure check please.

14:09:44 CAM-1 we’re *** turbulence

14:09:02 CAM [sound of click]

14:10:03 CAM [sound of chirp heard on cockpit area microphone channel with simultaneous beep on public address/interphone channel]

14:10:07 CAM-1 what was that?

14:10:08 CAM-2 I don’t know.

14:10:12 CAM-1 *** (’bout to lose a bus?)

14:10:15 CAM-1 we got some electrical problem.

14:10:17 CAM-2 yeah.

14:10:18 CAM-2 that battery charger’s kickin’ in. ooh, we gotta.

14:10:20 CAM-1 we’re losing everything.

14:10:21 Tower Critter five-nine-two, contact Miami center on one-thirty-two-forty-five, so long.

14:10:22 CAM-1 we need, we need to go back to Miami.

14:10:23 CAM [sounds of shouting from passenger cabin]

14:10:25 CAM-? fire, fire, fire, fire [from female voices in cabin]

14:10:27 CAM-? we’re on fire, we’re on fire. [from male voice]

14:10:28 CAM [sound of tone similar to landing gear warning horn for three seconds]

14:10:29 Tower Critter five-ninety-two contact Miami center, one-thirty-two-forty-five.

14:10:30 CAM-1 ** to Miami.

14:10:32 RDO-2 Uh, five-ninety-two needs immediate return to Miami.

14:10:35 Tower Critter five-ninety-two, uh, roger, turn left heading two-seven-zero.  Descend and maintain seven-thousand.

14:10:36 CAM [sounds of shouting from passenger cabin subsides]

14:10:39 RDO-2 Two-seven-zero, seven-thousand, five-ninety-two.

14:10:41 Tower What kind of problem are you havin’?

14:10:42 CAM [sound of horn]

14:10:44 CAM-1 fire

14:10:46 RDO-2 Uh, smoke in the cockp … smoke in the cabin.

14:10:47 Tower Roger.

14:10:49 CAM-1 what altitude?

14:10:49 CAM-2 seven thousand.

14:10:52 CAM [sound similar to cockpit door moving]

14:10:57 CAM [sound of six chimes similar to cabin service interphone]

14:10:58 CAM-3 OK, we need oxygen, we can’t get oxygen back here.

14:11:00 INT [sound similar to microphone being keyed only on Interphone channel]

14:11:02 CAM-3 *ba*, is there a way we could test them? [sound of clearing her voice]

14:11:07 Tower Critter five-ninety-two, when able to turn left heading two-five-zero.  Descend and maintain five-thousand.

14:11:08 CAM [sound of chimes similar to cabin service interphone]

14:11:10 CAM [sounds of shouting from passenger cabin]

14:11:11 RDO-2 Two-five-zero seven-thousand.

14:11:12 CAM-3 completely on fire.

14:11:14 CAM [sounds of shouting from passenger cabin subsides]

14:11:19 CAM-2 outta nine.

14:11:19 CAM [sound of intermittant horn]

14:11:21 CAM [sound similar to loud rushing air]

14:11:38 CAM-2 Critter five-ninety-two, we need the, uh, closest airport available …

14:11:42 Tower Critter five-ninety-two, they’re going to be standing by for you. You can plan runway one two to dolpin now.

14:11:45 one minute and twelve second interruption in CVR recording]

14:11:46 RDO-? Need radar vectors.

14:11:49 Tower critter five ninety two turn left heading one four zero 14:11:52

RDO-? one four zero

14:12:57 CAM [sound of tone similar to power interruption to CVR]

14:12:57 CAM [sound similar to loud rushing air]

14:12:57 ALL [sound of repeating tones similar to CVR self test signal start and continue]

14:12:58 Tower critter five ninety two contact miami approach on corrections no you you just keep my frequency

14:13:11 CAM [interruption of unknown duration in CVR recording]

14:13:15 CAM [sounds of repeating tones similar to recorder self-test signal starts and continues, rushing air.]

14:13:18 Tower critter five ninety two you can uh turn left heading one zero zero and join the runway one two localizer at miami

14:13:25: End of CVR recording.

14:13:27 Tower critter five ninety two descend and maintain three thousand

14:13:43 Tower critter five ninety two opa locka airports aout ah twelve o’clock at fifteen miles

[End of Recording]

The cargo hold of this DC-9 was airtight.  This was its fire protection.  Because any fire would quickly consume any oxygen in the hold and burn itself out.  But also loaded in Flight 592’s hold were some oxygen generators.  The things that produce oxygen for passengers to breathe through masks that fall down during a loss of pressurization.  These produce oxygen through a chemical reaction that produces an enormous amount of heat.  These were hazardous equipment that were forbidden to be transported on the DC-9.  Some confusion in labeling led some to believe they were ’empty’ canisters when they were actually ‘expired’.  The crash investigation concluded that one of these were jostled on the ground and activated.  It produced an oxygen rich environment in the cargo hold.  And enough heat to start a smoldering fire.  Which soon turned into a raging inferno that burned through the cabin floor.  And through the flightdeck floor.  Either burning through all flight controls.  Or incapacitating the crew.  Sending the plane into a nose dive into the everglades in less than 4 minutes from the first sign of trouble.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Aircraft De-Icing Systems

Posted by PITHOCRATES - October 23rd, 2013

Technology 101

A build-up of Ice on Airfoils causes a Reduction of Lift and a Loss of Stability

In the classic movie Airport (1970) after the guy pulled the trigger on his briefcase bomb the plane suffered a massive decompression.  When Dean Martin got back to the cockpit he told the flight engineer to give them all the heat they had.  Because it’s very cold flying above 10,000 feet without pressurization.  That’s why World War II flight crews wore a lot of heavy clothing and thick mittens in their bombers.  As well as oxygen masks as the air was too thin to breathe.  The B-17 even had open windows for the waste gunners.  Making it very cold inside the plane.  Because the air is very, very cold at altitude.

There is another problem at altitude.  Because of these very frigid temperatures.  Water droplets in the air will freeze to any surface they come into contact with.  They can reduce engine power for both propeller and jet engines.  They can freeze on ports used for instrumentation and give inaccurate readings of vital aircraft data (such as engine pressure ratio, aircraft speed, etc.).  And they can freeze on airfoils (wings, rudder, tail fin, etc.).  Disturbing the airflow on these surfaces.  Causing a reduction of lift and a loss of stability.

Ice and airplanes are two things that don’t go together.  As ice forms on a wing it disturbs the airflow over the surface of the wing.  Increasing drag.  And reducing lift.  Causing the plane to lose speed.  And altitude.  If the ice continues to form on the wing eventually it will stall the wing.  And if the wing stalls (i.e., produces no lift) the plane will simply fall out of the sky.  In the early days of aviation pilots were highly skilled in flying their planes where there were no icing conditions.  Flying over, under or around masses of air containing water droplets in subfreezing temperatures.  Today we have anti-icing systems.

The most common Anti-Icing System on Commercial Jets is a Bleed Air System

One of the most common anti-icing systems on turboprop aircraft is the use of inflatable boots over the leading edge of the wing.  Basically a rubber surface that they can pump air into.  When there is no ice on the wing the boot lies flat on the leading edge without interrupting the airflow.  When ice forms on the leading edge of the wing the boot inflates and expands.  Cracking the ice that formed over it.  Which falls away from the wing.

Commercial jets have larger airfoils.  And require a larger anti-icing system.  The most common being a pneumatic manifold system that ducts hot air to areas subject to icing.  Which works thanks to a property of gas.  If you compress a gas you increase its temperature.  That’s how a diesel engine can work without sparkplugs.  The compressed air-fuel mixture gets so hot it ignites.  This property comes in handy on a jet plane as there is a readily available source of compressed air.  The jet engines.

As the air enters the jet it goes through a series of fast-spinning rotors.  As the air moves through the engine these rotors push this air into smaller and smaller spaces.  Compressing it.  Through a low-pressure compressor.  And then through a high-pressure compressor.  At which time the air temperature can be in excess of 500 degrees Fahrenheit.  It is in the high-pressure compressor that we ‘bleed’ off some of this hot and pressurized air.  We call this a bleed air system.  The air then enters a manifold which ducts it to at-risk icing areas.  From the engine cowling to the wings to the instrumentation ports.  Using the hot air to raise temperatures in these areas above the freezing temperature of water.  Thus preventing the formation of ice.

The Drawback of a Bleed Air System is Reduced Engine Efficiency

The bleed air system does more than just anti-icing.  It also pressurizes the cabin.  As well as keeps it warm.  Which is why we don’t have to dress like a crewmember on a World War II bomber when we fly.  It also powers the air conditioning system.  And the hydraulic system.  It provides the pressure for the water system.  And it even starts the jet engines.  With the source of pressurized bleed air coming from the auxiliary power unit mounted in the tail.  Or from an external ground unit.  Once the jets are running they disconnect from the auxiliary source and run on the bleed air from the engines.

There is one drawback of a bleed air system.  It bleeds air from the jet engine.  Thus reducing the efficiency of the engine.  And a less efficient engine burns more fuel.  Raising the cost of flying.  With high fuel costs and low margins airlines do everything within their power to reduce the consumption of fuel.  Which is why pilots don’t top off their fuel tanks.  They’d like to.  But extra fuel is extra weight which increases fuel consumption.  So they only take on enough fuel to get to their destination with enough reserve to go to an alternate airport.  Even though it seems risky few planes run out of fuel in flight.  Allowing the airlines to stay in business without having to raise ticket prices beyond what most people can afford.

To help airlines squeeze out more costs Boeing designed their 787 Dreamliner to be as light as possible by using more composite material and less metal.  Making it lighter.  They are also using a more efficient engine.  Engines without a bleed air system.  In fact, they eliminated the pneumatic system on the 787.  Converting the pneumatic components to electric.  Such as using electric heating elements for anti-icing.  Thus eliminating the weight of the bleed air manifold and duct system.  As well as increasing engine efficiency.  Because all engine energy goes to making thrust.  Which reduces fuel consumption.  The key to profitability and survival in the airline industry.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Air, Low Pressure, High Pressure, Lateen Sail, Flight, Wing, Lift, Drag, Leading Edge Slats, Trailing Edge Flaps and Angle of Attack

Posted by PITHOCRATES - October 10th, 2012

Technology 101

There’s more to Air than Meets the Eye even though it’s Invisible

When you take a shower have you noticed how the shower curtain pulls in towards you?  Have you ever wondered why it does this?  Here’s why.  Air has mass.  The water from the showerhead sends out a stream of water drops that also has mass.  So they fall to the floor of the shower.  Pushing air with it.  And pulling air behind it.  (Like drinking through a straw.  As you suck liquid out of the straw more liquid enters the straw.)  So you not only have a stream of water moving down alongside the shower curtain.  You also have a stream of air moving down alongside the shower curtain.

As the falling water sweeps away the air from the inside of the shower current it creates a low pressure there.  While on the outside of the curtain there is no moving water or air.  And, therefore, no change in air pressure.  But there is a higher pressure relative to the lower pressure on the inside of the shower curtain.  The low pressure inside pulls the curtain while the high pressure outside pushes it.  Causing the shower curtain to move towards you.

There’s more to air than meets the eye.  Even though it’s invisible.  It’s why we build modern cars aerodynamically to slice through large masses of invisible air that push back against cars trying to drive through it.  Making our engines work harder.  Consuming more gas.  And reducing our gas mileage.  While race cars will use spoilers to redirect that air up, forcing the weight of the car down on the tires.  To help the tires grip the road at higher speeds.  We even design skyscrapers to be aerodynamic.  To split the prevailing winds around the buildings to prevent large masses of air from slamming into the sides of buildings, minimizing the amount buildings sway back and forth.

We put the Engines on, and the Fuel in, the Wings to Counteract the Lifting Force on an Aircraft’s Wings

Air can be annoying.  Such as when the shower curtain sticks to your leg.  As it steals miles per gallon from your car.  When it shakes the building you’re in.  But it can also be beneficial.  As in early ship propulsion before the steam engine.  Large square-rigged sails that pushed ships along the prevailing winds.  And triangular lateen sails that allowed us to travel into the wind.  By zigzagging across the wind.  With the front edge of a lateen sail slicing into the wind.  The sail redirects the wind on one side of the sail to the rear of the boat that pushes the boat forward.  While the wind on the other side follows the curved sail creating a low pressure that pulls the boat forward.  Like the inside of that shower curtain.  Only with a lot more pulling force.

Harnessing the energy in wind let the world become a smaller place.  As people could travel anywhere in the world.  Of course, some of that early travel could take months.  And spending months on the open sea could be very trying.  And dangerous.  A lot of early ships were lost in storms.  Ran aground on some uncharted shoal.  Or simply got lost and ran out of drinking water and food.  Or fell to pirates.  So it took a hearty breed to travel the open seas under sail.  Of course today long-distant travel is a bit easier.  Because of another use for air.  Flight.

Like a lateen sail an aircraft wing splits the airflow above and below the wing.  And like the lateen sail an aircraft wing is curved.  The air pushes on the bottom of the wing creating a high pressure.  While the air passing over the curve of the top of the wing creates a low pressure.  Pulling the wing up.  In fact, it’s the wind passing over the top of the wing that does the lion’s share of lifting airplanes into the air.  The low pressure on top of the wing is so great that they put the engines on the wings, and the fuel in the wings, to counteract this lifting force.  To prevent the wings from curling up and snapping off of the plane.  Planes with tail-mounted engines have extra reinforcement in the wings to resist this bending force.  So those lifting forces only lift the plane.  And not curl the wing up until it separates from the plane.

To make Flying Safe at Slow Speeds they add Leading Edge Slats and Trailing Edge Flaps to the Wing

Sails can propel a ship because a ship floats on water.  The wind only propels a ship forward.  On an airplane the wind moving over the wings provides only lift.  It does not propel a plane forward.  Engines propel planes forward.  And it takes a certain amount of forward speed to make the air passing over the wings fast enough to create lift.  The faster the forward air speed the greater the lift.  Today jet engines let planes fly high and fast.  In the thin air where there is less drag.  That is, where the air has less mass pushing against the forward progress of the plane.  At these altitudes the big planes cruise in excess of 600 miles per hour.  Where these planes fly at their most fuel efficient.  But these big planes can’t land or take off at speeds in excess of 600 miles per hour.  In fact, a typical take-off speed for a 747-400 is about 180 miles per hour.  Give or take depending on winds and aircraft weight.  So how does a plane land and take off at speeds under 200 mph while cruising at speeds in excess of 600 mph?  By changing the shape of the wing.

We determine the amount of lift by the curvature and surface area of the wing.  The greater the curvature the greater the lift.  However, the greater the curvature the greater the drag.  And the greater the drag the more fuel consumed at higher speeds.  And the more stresses placed on the wing.  Also, current runways are about 2 miles long for the big planes.  That’s when they land and take off at speeds under 200 mph.  To land and take off at speeds around 600 mph would require much longer runways.  Which would be extremely costly.  And dangerous.  For anything traveling close to 600 mph on or near the ground would have a very small margin of error.  So to make flying safe and efficient they add leading edge slats to the front edge of the wing.  And trailing edge flaps to the back edge of the wing.  During cruise speeds both are fully retracted to reduce the curvature of the wing.  Allowing higher speeds.  At slower speeds they extend the slats and flaps.  Greatly increasing the curvature of the wing.  And the surface area.  Providing up to 80% more lift at these slower speeds.

At takeoff and landing pilots elevate the nose of the aircraft to increase the angle of attack of the wing.  Forcing more air under the wing to push the wing up.  And causing the air on top of the wing to turn farther away for its original direction of travel as it travels across the top of the up-tilted wing.  Creating greater lift.  And the ability to fly at slower speeds.  However, if the angle of attack it too great the smooth flow of air across the wing will break away from the wing surface and become turbulent.  The wing will not be able to produce lift.  So the wing will stall.  And the plane will fall out of the sky.  With the only thing that can save it being altitude.  For in a stall the aircraft will automatically push the stick forward to lower the nose.  To decrease the angle of attack of the wing.  Decrease drag.  And increase air speed.  If there is enough altitude, and the plane has a chance to increase speed enough to produce lift again, the pilot should be able to recover from the stall.  And most do.  Because most pilots are that good.  And aircraft designs are that good.  For although flying is the most complicated mode of travel it is also the safest mode of travel.  Where they make going from zero to 600 mph in a matter of minutes as routine as commuting to work.  Only safer.

www.PITHOCRATES.com

Share

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,