Heat Transfer, Conduction, Convection, Radiation and Microwave Cooking

Posted by PITHOCRATES - September 4th, 2013

Technology 101

At the Atomic Level Vibrating Atoms create Heat

We make life comfortable and livable by transferring heat.  And by preventing the transfer of heat.  In fact, once we discovered how to make fire our understanding of heat transfer began and led to the modern life we know today.

At the atomic level heat is energy.  Vibrating atoms.  With electrons swirling around and jumping from one atom to another.  The more these atoms do this the hotter something is.  There is little atomic motion in ice.  And ice is very cold.  While there is a lot of motion in a pot of boiling water.  Which is why boiling water is very hot.

How do we get a pot of water to boil?  By transferring heat from a heat source.  A gas or electric burner.  This heat source is in contract with the pot.  The heat source agitates the atoms in the pot.  They begin to vibrate.  Causing the pot to heat up.  The water is in contact with the pot.  The agitated atoms in the pot agitate the atoms in the water.  Heating them up.  Giving us boiling water to cook with.  Or to make a winter’s day pleasant indoor.

Fin-Tube Heaters create a Rising Convection Current of Warm Air to Counter a Falling Cold Draft

If you touch a single-pane window in the winter in your house it feels very cold.  Cold outside air is in contact with the glass of the window.  Which slows the movement of the atoms.  Bringing the temperature down.  This cold temperature doesn’t conduct into the house.  The heat conducts out of the house.  Because there is no such thing as cold.  As cold is just the absence of heat.

The warm air inside the house comes in contact with the cold window.  Transferring heat from the air to the window.  The atoms in the air slow down.  The air cools down.  And falls.  This is the draft you feel at a closed window.  Cold air is heavier than warm air.  Which is why hot air rises.  And cold air falls.  As the cold air falls it pulls warmer air down in a draft.  Cooling it off.  Creating a convection current.

To keep buildings comfortable in the winter engineers design hot-water fin-tube heaters under each exterior window.  Gas burners heat up water piping inside a boiler.  The heat from the fire transfers heat to the boiler tubes.  Which transfers it to the water inside the tubes.  We then pump this heating hot water throughout the building.  As it enters a fin-tube heater under a window the hot water transfers heat to the heating hot water piping.  Attached to this piping are fins.  The heat transfers from the pipe to the fins.  Which heats the air in contact with these fins.  Hot air rises up and ‘washes’ the cold windows with warm air.  As it rises it pulls colder air up from the floor and through the heated fins.  Creating a convection current of warm air rising up to counter the falling cold draft.

Microwave Cooking won’t Sear Beef or Caramelize Onions like Conductive or Radiation Cooking

If you’ve ever waited for a ride outside an airport terminal on a cold winter’s day you’ve probably appreciated another type of heat transfer.  Radiation.  Outdoor curbside is open to the elements.  So you can’t heat the space.  Because there is no space.  Just a whole lot of outdoors.  But if you stand underneath a heater you feel toasty warm.  These are radiators.  A gas-fired or electric heating element that gets very, very hot.  So hot that energy radiates off of it.  Warming anything underneath it.  But if you step out from underneath you will feel cold.  It’s the same sitting around a campfire.  If you’re cold and wet you can sit by the fire and warm up in the fire’s radiation.  Move away from the fire, though, and you’re just cold and wet.

We use all these methods of heat transfer to cook our food.  Making life livable.  And enjoyable.  When we pan-fry we use conduction heating.  Transferring the heat from the burner to the pan to the food.  When we bake we use convection heating.  Transferring the heat from the burner to heat the air in the oven.  Which heats our food.  When we use the broiler we use radiation heating.  Using electric heating elements that glow red-hot, radiating energy into the food underneath them.  A convection oven adds a fan to an oven.  To blow heated air around our food.  Decreasing cooking time.

There’s one other cooking method.  One that is very common in many restaurants.  And in most homes.  But real chefs rarely use this method.  Microwaving.  With a microwave oven.  They’re great, convenient and fast but fine cooking isn’t about speed.  It’s about layering flavors and seasoning.  Which takes time.  Which you don’t get a lot of when a microwave begins vibrating the atoms in the water molecules in your food.   Which is how microwaves cook.  Cooking by vibrating atoms in your food brings temperatures up to serving temperatures.  Unlike conduction heating such as in pan-frying where we bring much higher temperatures into contact with our food.  Allowing us to sear beef and caramelize onions.  Something you can’t do in a microwave oven.  Which is why real chefs don’t use them.



Tags: , , , , , , , , , , , , , , , , , , , , , ,